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FOREWORD

The Harry Diamond Laboratories located in Adelphi, Maryland served
a8 the site for the 22nd Conference on the Design of Experiments in Army
Research, Development, and Testing held 20«22 October, 1976, This Army
agency co=hosted the first three conferences in this series with the
National Bureau of Standards when it was located there, It was a pleasure
to meet in the new quarters of the Harry Diamond Leboratories and take
advantage of thelr excellent facilitles., Planning for these meetings
reguires much effort and attention to detall and we are indebted to
Dr. Joseph Kirazchner who served as Chairman for Local Arrangements and was
ably assisted by Grace Frazier and Strven Kimmel., We are plcased that
Colonel Thomas MeGregor, Commanding Oi.icer of the Laboratories openecd
the Conference and welcomed the participants., We look forward to meeting
at the lLaboratorles sgain in the future.

It 18 traditlonal to have invited speakers glve essentlnlly expoultory
talks on toplecs o current interest in statlstics and probability. There
is also an attempl to provide talks that are somewhat consistent with the
theme of “he mission of the Army installation at which the annual Conference
is held, This confluence of purposes was achieved, The fMrst talk was
given by Professor J. Stuart Hunter of Princeton Unlversity on "The Measurement
Process," The crux of this talk was measurement when data is avallable over
time such as in air pollution studles and the spewker presented two different
models by which this could he nccomplighed. Later in the first morning
Professor Benjamin S, Blanchard of Virginia Polytechunile Instltute and
State Unlversity gave a talk on, "Management of Rellability." The
reliebility theme pervades many Army instullations and this is zo at the
Harry Dismond Laboratories. On the afterncon of the seocond day there
were two sessions for invited speukers and each war devoted to a very
ocurrent tople in statistics where each topiec nas a fast developing
literature, The f#lrgt gpeaker was Dr, Carl N, Morris of the RAND Corpora=
tion who spoke on, "Stein's Estimutor, Itz Uenerallzations and Its
Applications." 7This was followed by Professor Rebert Hopag of the
University of Iowa who spoke on, "Robust Statlstical Procedures." The
subject matter in both of these tnlks has wide ranging applications
in & number of diverse actlvities of the Army., On the morning of the
last dey of the meetings Professor lNozer D. Singpurwalla of the George
Weshington University spoke on, "Accelerated life Testing." 'This toplc
hat a long history in Defense Department programs and is still a quite
aotive subjedt for gtatistical investipgations.

The asudience consisted of a large mumber of parbicipants from Arny
installations, other government agencles, and a nuuber of investigutors
from universities, A majoi purpeose of the conference i3 to bring
together those enpgaged in scientific work in Army inslallallons with other
investigators, This interaction hus been golng on successfully since the
inception of the progran and it continued ut this Conference. Statlsticlans
and othere in Army installations diceuss thelr work at techni:al seccions
and clinical sesasions al each Annunl Confercnce.  For this Conference
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there were elght technical sessions comprising eiphteen paperts and four
clinical sessions. At the clinleal sessions a panel of experts

responds to problems raised by those in Army installations who have
usually given advance manuscript coples to the panelists. Beslides the
technlcal aspects, these sessions provide a source for initisting future
collaboration between scientints in Army installations and those in
university life.

On the evening of the first dauy of the Conference a banguet is held
et which the Samuel 8. Wilks Memorial Award of the American Statistical
Associstion and the Department of the Avmy is presented. At this meeting
the twelfth award wag presented to Dr. Solomon Kullback, Profesor Emeritus
of Statistlcs at the CGeorge Washington University. 'The award was made by
Dr. Joan Rogenblatt, Chalrman of the Wilks Award Committee. Professor
Kullback was clted for substantive contributions to both the theory and
the application of statistlcs, ineluding his work on multidimensional
contingency table anelysis end cryptanalysls, and his cutstanding contria-
butions in the application of statistics in the service of the Natlon.

The Army Mathematlcs Steering Committee sponsors these meetings
on behalf of the Offlce of the Chief of Research and Development and
Acquisition to bring new developments in statistice to Army aclentlsts
and engineers and to expose them to thinking that could be profitable
to them in the execution of their mizsions. The Committee has asked
that the Proceedings of the Conference be published and igsued Army
wlide and to other scientific communities,

At the beginning of each calander year the Program Committee for
these conferences is seleoted and meets in Washington, D.C: to suggzest
areas of intereat, to outline a program, and to suggest speakers for
the meebing to be held later that year., I would like to express my
sppreciation. to Dr. Frank Grubbg, Frogram Chairman for this year's
Committee and to Dr. Douglas Tang, Chalrman of the Subcommittee on
Probabillty and Statistics, Army Mathemutlcs Steering Committee, for
their efforts and great help. My thanks also go to other committee
members involved in developing this year's program: Dra. Walter D,
Foster, Bernard Harrls, Joseph M. Kirschner, Badrlg Kurkjian, Clifford
J,» Maloney, Robert J. Launer, Dougles B. Tang. Dr. Francls G. Dressel,
Program Committee Becretary, as always was helpful in mamy ways in making
sure the program was a succesas. Thus, many helped in gulding this
Conference to a successful conclusion and this is very much apprecisted.

Herbert Solomon
Conference Chalrman
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AGENDA
THE TWENTY-SECOND CONFERENCE ON THE DESIGN OF EXPERIMENTS IN
: ARMY RESEARCH, DEVELOPMENT AND TESTING
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20-22 October 1976
Harry Diamond Laboratories

wader  Wadnesday, 20 Octobar wwwiw

0815-0915 Registration - Lobby of the Administration Building: Building 205
0915-1215  GENERAL SESSION ! -- Auditorium of the Administration Building
CALLING OF CONFERENCE TO ORDER
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Mr. Joseph Kirshner, Chairman on Local Arrangements, Harry
Diamond Laboratories, Adelphi, Maryland

WELCOMING REMARKS

Colonel Thomas McGregor, COmmahd1ng Officer,
Harry Diamond Laboratories, Adeiphi, Maryland
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CHAIRMAN OF SESSION 1 | {

Dr. Frank E. Grubbs, Program Committee Chairman, Aberdeen
Proving Ground, Maryland

THE MEASUREMENT PROCESS
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Professor J, Stuart Hunter, School of Engineering and Applied
Science, Princeton University, Princeton, New Jersey

1030-1100  BREAK
1100-1215  GENERAL SESSION I (CONTINUED)
MANAGEMENT OF RELIABILITY

o,
o

Bk o rmm s

Professor Benjamin S. Blanchard, Jr., Engineering Extension
Division, V1r$ini| Polytechnic Institute and State University, :
Blacksburg, Virginia j

1215-1315 LUNCH -- HDL Cafeteria




baall] Hednesday RRkRE
1315-1445  CLINICAL SESSION* A -- Auditorium of Building of 205
CHAIRMAN

Robert L. Launer, US Army Research Office, Research Triangle
Park, North Carolina

PANELISTS
Seymour Geisser, School of Statistics, University of Minnesota,
Minneapolis, Minnesota

Robert V. Hogg, The University of Iowa, Department of Statistics,
Iowa City, Iowa

J. Stuart Hunter, School of Engineering and Applied Science,
Princeton University, Princeton, New Jersey

Herbert Solomon, Department of Statistics, Stanford University,
Stanford, California

PROBLEMS IN TESTING PHARMACOKINETIC MODELS

LTC Carl C. Peck and L. A. Hopkins, Blood Research Division,

Department of Surgery, Letterman Army Institute of Research,

Presidfo of San Francisco, California

DIETARY BRAN AND CELLULOSE: EFFECTS ON SERUM LIPIDS

Walter D. Foster, Charlotte M. Heggi, Daniel H. Conner, Armed

Forces Institute of Pathology; Frank A, Franklin, Jr., Walter

Reed Army Medical Center; Samuel M. Wylde, Ener-G-Foods, Inc.;

Joe M. Blumberg, Oscar B. Hunter Memorial Laboratory, Washington, DC
1315-1445  TECHNICAL SESSION 1 -- Room 2GO16

CHATRMAN

Langhorne P, Withers, US Army Operational Test and Evaluation
Agency, Falls Church, Virginia

ANALYSIS OF AN ERROR-TIME RESPONSE PERFORMANCE
Michael Hacskaylo, Night Vision Laboratory, USA Electronics g

Comand, Ft. delvoir, Virginia




Rl s e

=T e

1445-1515
1515-1645

15151645

whbirh  Yednesday wwwew

AN EXPERIMENTAL DESIGN TO DETERMINE THE FREQUENCY DISYRIBUTION
OF LASER RADAR (LADAR) RETURN SIGNAL VOLTAGES

Jerry W. Vickers, Systems Evaluation, Aeroballist{cs Directorate,
USA Missile R&D Command, Redstone Arsenal, Alabama

BREAK
CLINICAL SESSION B -« Auditorium of Building 205
CHAIRMAN

«Joan R. Rosenblatt, Statistical Engineering Laboratory, National
Bureau of Standards, Washington, OC

PANELISTS

A. Clifford Cohen, Institute of Statistics, University of Georgia,
Athens, Georgia
Frank E, Grubbs, Aberdeen Proving Ground, Maryland

Bernard Harris, Mathematics Research Center, University of
Nisconsin, Madison, Wisconsin

Nozer D. Singpurwalla, Department of Operations Research, George
Washington University, Washington, OC

RELIABILITY ANALYSIS OF AIRFIELD LIGHTING SYSTEMS

Frank Kuo and Ed Lindow, Construction Engineering Research
Laboratory, Champaign, [1linois

SIMPLIFIED METHOD FOR DETERMINING APPROXIMATE LOWER CONFIDENCE
gggxbs OF A SYSTEM WHOSE RELIABLITY FUNCTION IS DESCRIBED AS A

Louis M, lannuzzelli and R. Dostal, HQ, USA Armament Command,
Rock Island, ll1linois

TECHNICAL SESSION 2 -- Room 26016

CHAIRMAN

sertrude Weintraub, Picatinny Arsenal, Dovar, New Jersey
EVALUATION OF GUNNER ERRORS THROUGH TIME SERIES ANALYSIS
Letricha Greene and John Howerton, Systems Evaluation,

Aeroballistics Directcrata, USA Missile R&D Command,
Redstone Arsenal, Alabama
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0830-1010

0830-1010

*trtk  ednesday wewew
RANGE INSTRUMENTATION POSITION ACCURACY
F. L. Carter, Dugway Proving Ground, Dugway, Utah
SOCIAL HOUR AND BANQUET -- Hampshire Inq
PRESENTATION OF THE SAMUEL $. WILKS MEMORIAL AWARD
Dr. Frank E. Grubbs, Master of Ceremonies

whwdw  Thursday, 21 October wiswk
CLINICAL SESSION C -- Auditorium of Building 205
CHAIRMAN

A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

PANELISTS

Robert Bechhofer, Department of Operations Research, Cornell
University, Ithaca, New York

Seymour Geisser, School of Statistics, University of Minnesota,
Minneapolis, Minnesota

Robert V. Hogg, The University of lowa, Department of Statistics,
Iowa City, lowa

J. Richard Moore, US Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland

EXPERIMENTAL DESIGN FOR LABORATORY EVALUATION OF IMAGING
SYSTEMS

R. Flaherty, J. Palmer and F. Shields, Night Vision Laboratory,
USA Electronics Command, Ft. Belveir, Virginia

A METHOD FOR DETERMINING PAIRWISE CONTRASTS FROM A FRIEDMAN
TWO-WAY LAYOUT BASED ON A THEOREM BY MARASCUILO

Jimmie C. Deloach and Eugene Dutoit, USA Infantry Center,
Ft. Benninyg, Georgia

TECHNICAL SESSION 3 << Room 28016
CHAIRMAN

J. Bart Wilburh, Jr., I&M Branch, US Army Electronic Proving
Ground, Ft. Huachuca, Arizona
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Wik Thursd.y [ 211 1]
ESTIMATE OF RELIABLITY IN THE STRESS-STRENGTH MODEL

Asit P. Basu, University of Missouri-Columbia, Department
of Statistics, Columbia, Missouri

UNDERLYING PROBABILITY DISTRIBUTION OF GUN TUBE FATIGUE LIFE
Ronald L. Racicot, Waterviiet Arsenal, Watervliiet, New York

FAILURE PREDICTION OF FINITE FLAWED CERAMIC PLATES UNDER
COMBINED STRESSES

Donald M. Nzal, Army Materiel and Mechanics Research Center,
Watertown, Massachusetts

10101040  BREAK
1040-1216  CLINICAL SESSION D -- Auditorium of Building 205
CHAIRMAN

Clifford J. Maloney, Bureau of Biclogics, FDA, Bethesda,
Maryland

PANELISTS
Robert Bechhofer, Department of Operations Research, Cornell

University, Ithaca, New York

6.E.P. Box, Department of Statistics, University of Wisconsin,
Madison, Wisconsin., Representing the Mathematics Research Center.

Bernard Harris, Mathematics Research Center, University of
Wisconsin, Madisor, Wisconsin

Herbert Solomon, Department of Statistics, Stanford University,
Stanford, California

ESTIMATION AND EFFECT OF NOISE CORRELATION ON VARIANCE
ESTIMATION FROM MOVING ARC SMOOTHING

Paul H, Thrasher, Quality Assurance Office, White Sands
Missile Range, New Mexico

1040-1218  TECHNICAL SESSION 4 -- Room 2Q016
CHAIRMAN

Walter 0. Foster, Armed Forces Institute of Pathology,
Washington, OC




1218-1318
1315-1416

13161415
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ROBUST OUTLIER DETECTION IN TRAJECTORY DATA REDUCTION
Robert H. Turner and William S. Agee, Analysis and Computation
Division, National Range Operations Directorate, White Sands
Missile Range, New Mexico
ON THE UPWARD CONTINUATION OF FIRST DERIVATIVES OF THE
ANOMALOUS GRAVITY POTENTIAL UNDER CONSIDERATION OF A
SUITABLE DATA BASE

H. Baussus von Luetzow, USA Engineer Topographic Laboratories,
Ft. Belvoir, Virginia

COMPARISON OF ERROR RATES AND MISCLASSIFICATION PROBABILITIES
USING BINOMIAL AND BAYESIAN MODELS FOR PERSONNEL CLASSIFICATION

Frederick H. Steinheiser, Jr. and Kenneth 1. Epstein, USA
Research Institute, Arlington, Virginia

LUNCH -~ HDL Cafeteria

TECHNICAL SESSION 5 <« Auditorium of Building 205
CHAIRMAN

Joseph S. T{1er. Jr., Chemical Research Laboratory,

8lophysics Laboratory, Us Army Edgeweod Arsanal, Edgewood,
Maryland '

“TABLE LOOK UP AND INTERPOLATION FOR A NORMAL RANDOM NUMBER

GENERATOR

willfam L. Shepherd and John N. Hynes, Systems Management
Division, Instrumentation Directorate, White Sands Missile
Range, New Mexico

EIGENVECTORS ANALYS1S OF EMPIRICAL DATA VERSUS UTILIZATION OF
3TANDARD FUNCTIONS '

Oskar M. Essenwanger, Physical Sciences Directorate, USA
Missile RDAE Laboratory, USA Missile Command, Redstone
Arsenal, Alabama

TECHNICAL SESSION 6 =- Room 2G016

CHATRMAN

Malcolm S. Taylor, US Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland
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INDUCTION ON A MARKOV CHAIN

Richard M. Brugger, RAM Assessment Division, USA Armament
Command, Rock Island, I111nois

¥::§g; DEPENDENT PROCESSES AND CONTINUOUS SAMPLING PLANS IN

David L. Arp, Naval Weapon: Center, China Lake, California
1415-1645 GENERAL SESSION Il -- Auditorium of Building 205

CHAIRMAN

Or. Douglas B. Tang, Department of Biostatistics/Applied

Mathematics, Division of Biumetrics and Medical Information

Processing, Walter Reed Army Institute of Research,

Washington, DC

STEIN'S ESTIMATOR, ITS GENERALIZATIONS, AND ITS APPLICATIONS

F
!
é Dr. Carl N. Morris, Rand Corporation, Santa Monica, California
i 1515-1545  BREAK
: 1545-1645  GENERAL SESSION 11 (CONTINUED)
ON ROBUST STATISTICAL PROCEDURES
Professor Robert V. Hogg, The University of lowa, Department
of Statistics, [owa City, lowa
wkkad  Friday, 22 October 1976 wawww
0830-1015  TECHNICAL SESSION 7 -~ Room 2G016
CHATRMAN

Gerald Andersen, Battlefield System Integration Directorate,
Alexandria, Virginia

ESTIMATING RELIABILITY FROM SMALL SAMPLES

Donald W. Rankin, Army Materisl Test and Evaluation Directorate,
White Sands Missile Range, New Mexico
(Jerry Short will present the paper)
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SMALL SAMPLE SIZES
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Treet g T
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MANAGEMENT OF
RELIABILITY, AVAILABILITY, AND MAINTAINABILITY (RAM)

Benjamin S, Blanchard
College of Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT, Our systems and equipment in the field have become more and more
complex; are not operationally available a good percent of the time; require
extensive maintenance and support; and are quite costly. One of the causes for
this dilemms is the emghasis that has been placed on performance and advanced
technology, while at the same time very little consideration has been given to
reliability, availability, and maintainability (RAM). More recently, a concerted
effort has been initiated to recognize RAM as necessary purameters o% system/
equipment design and development, Military specifications and standards have
been generated and RAM requirements (to varying degrees) have been formally
applied on many programs, Although this effort has forced the recognition of
RAM to a considerable extent, many program implementation problems currently
ex]i?st and our systems/equipment in the field are still experiencing significant
difficulties,

In this paper the author has attempted to identify some of the problems
associated with current RAM implementation practices, and to recommend some
courses of action for improvement in the future. A significant challenge lies
ahead if we intend to derive some of the benefits from RAM,

Jo . INTRODUCTION, Through the past few decades emphasis in the desi.?\ and
development of new systems and equipment has been placed primarily on performance
factors, delivery schedules, and initial acquisition price, The pressures associ-
ated with Increased performance has resulted in a dilemma where many items current-
ly in government inventories are highly complex, inoperative a good percentage
of the time, difficult to maintain, and in general too costly to justify, In other
words, we have produced a large quantity of systems and equipment with low reli-
ability and poor maintainability characteristics, and the level of support neces-
sary to sustain them operationally is considerable! This in turn has:

a. Threatened the overall availability and operational effectiveness of
gystems and equipment in the field and hence, the defense of our country
éither directly or indirectly). '

b, Caused high maintenance work loads and increased logistics support
resource requirements,

c. Increased life cycle costs for systems/equipment acquisition and
utilization, tﬁ:au'ticx,nlarly those costsassociated . with system operation
and support throughout the life cycle,
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The current trends of rising system costs plus inflation, combined with some
budgetary shifts from defense to other public sectors, are causing serious
concerns relative to our future defense capability.

More recenitly, an attempt has besen initiated to counter these trends
through the recognition of some critlical "cause and effect" relationships
involving reliability, availability, maintainability, performance, logistics
support, life cycle cost, etc, Experience has indicated that highly reliable
and maintainable systems/equipment are a means for improving operational
effectiveness while holding the line on 1life cycle costs, Reliability and
maintainability are indeed characteristics which are inherent in system/
equipment design, and the extent to which they are considered has a signifi-
cant impact on logistics support requirements and life cycle cost. Further,
the consideration of reliability and maintainability in the design process
must commence at the conceptual phase of system development and extend throug
detailed full-scale enfineering development, test and evaluation, and pro-
duction, In essence, it has been recognized by many that the conditions
noted below should be stressed in the future:

a. Reliability, availability, and maintainability should be considered
in the system design and development process on an equivalent basis
with performance and other related factors,

b, Logistics support should be considered in the design process and
should be closely integrated with reliability, availability, main-
tainability, and performance considerations.

c. Life cycle cost should be considered as a design parameter (i.e.,
design to unit acquisition cost design to unit operation and
support cost, design to unit 11fe cycle cost).

A primary objective is to provide the necessary management emphasis in all
future system/equipment acquisitions, or modifications for Improvement, to
ensure that these considerations are addressed at the proper level.

With this objective in mind, it is now appropriate to review current
practices, assess the pros and cons of such, and determine the steps neces-
sary to further improve our systems and equipment. The author attempts to
accomplish this in the paragraphs below, with the discussion basically
focusing on the management of Reliability, Availability, and Maintainability

RAM).

2! E¥§§¥HI RAM EBAQIEQES. Although reliability, availability, and
maintaina y are recognized in many programs today, the implementation
practices associated with these areas still require some improvement. A few
characteristic problems as they currently exist in one-going programs are
outlined below (not necessarily presented in any speci%ic order).

a, Specification of System Technical Requirements

(1) In many instances, quantitative factors are included in requests
for proposals (RFPs) and in contracts as ''goals'. Consequently,

2
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these factors are indeed treated as goals and not as requirements,
and are considered only lightly (if at all) in program impIementation.
(2) Quantitative factors are not always specified in meaningful terms,
Often, probabilistic values that can not be realiEEIEEIﬁ?'abmonstrated
are specified instead of quantitative factors that can be understood,
allocated, and verified, For instance, it is questionable that one
can adequately verify a 0,9995 reliability requirement when limited
quantities of equipment are procured and the test sumple is small,
Also, it 1s hard to explain a "0.9995 factor'" to a design engineer
in a meaningful mammer, where & MIBF or MIEM value would be more
appropriate, In essence, the mathematical '"jargon" sometimes employed
is difficult to relate directly to design and is often misunderstood
by engineers and management personnel alike.

(3) The application of technical requirements is not always related to

;i:cific mission objectives, As a result, it is difficult to deter-
e whether the requirements are too stringent or too loose relative

to the ultimate mission need, In many cases mission requirements are
not adequately defined early enough in the program, and one can not
properly design equipment without a mission profile or scenario of
some type; thus, RAM requirements result from a '"best-guess' approach
which is less than satisfactory.

RAM as Design Parameters

Reliability, availability, and maintainability are not recognized as
desi rameters. Past practices have promoted the concept of '"design

e system qulickly, put it into a test program, and fix it if necessary",
RAM have not been truly coupled into the design effort, but designated
for measurement or demonstration at the conclusion of full-scale engineer-
ing development, This concept has been quite costly, particularly when
extensive system/equipment modifications are necessary to meet RAM require-
ments at this late stage of engineering development.

Application of Specifications and Standards

(1) On a number of occasions the 'panic' to release specifications for
a procurement results in a fragmented document incorporating con-
flicts and contradictions. RAM is not properly integrated into the
overall product, The specification is without doubt one of the most
important aspects of a program, but is not always given the neces-
sary level of attentlon because of the tight schedule requirement
to publish something for immediate dissemination purposes, The
consequences frequently result in problems occurring throughout the
remainder of the program.

@) Military specifications and standards (e.g., MIL-STDs-470,-471,-781,
<785) are often arbitrarily applied to a contract in terms of 'blanket
coverage' without the tailoring of such to the specific program need.
This can result in the application of meaningless requirements, un-
timely activities and information, tvo much data of little value,




and high consequential program costs, Specifications and standards
should address real time task enforcement, product measurement and
control, with less overall dependence on test and demonstration at
the end of full-scale engineering development.

d. Structuring of Test Programs

(1) System/equipment testing is accomplished to different environmental
profiles than what is actually experienced in the field, Hence, the
test results are not necessarily a verification that the intended
requirements have (or have not) been met, This relates to the
initial inade%uate definition of mission profiles or scenarios as
discussed in Paragraph 2a(3) above,

(2) Many test and demonstration programs are accomplished at the end
of fullescale engineering development after the commitment of
production/operation funds, Testing at this stage can ohly measure
the worth of a design configuration at a point when it is too costly
m time consuming to make major changes to correct a problem for

e, Producer Accountability

Producer accountability ia generally lacking! If the system/equipment fails
in test and demonstration, the policy in some cases has been to discount the
failures or to change the standards such that the system will pass, How
often is the system/equipment actually rejected by the customer because of
failure to pass RAM tests? In such cases, is the producer actually required
to initiate the necessary corrective action at his own expense? Perhaps
there are some cases where the producer is actually held accountable for his
design for RAM; however, in numerous other instances the system/equipment
is accepted regardless of the outcome of RAM verification testing,

The problems outlined above are representative of areas where current
implementation [iractices concerning RAM need improvement, In all cases the type
of problems indicated have beai recognized, and some action is being taken (to
varying degrees) in an attempt to improve future system/equipment acquisitions
from the RAM standpoint, However, inspite of what 1s currently underway relative
to RAM activities, a great deal of additional effort is required if the objectives
of RAM in system/equipment design and development are to be truly realized,

Serl CHALLENGES FOR T miliAt t.}&;fi oint fhebrﬁgor?qu%;tion !is--égg We
rious Abou a valla ty ntainal t e author rme
belleves that we are! PEv'Jever every e%forf must be made to preclude or alleviate
some of the problem areas ment;.oned above., It is felt that no new Eolicies per
se are necessary, but that a new approach to policy implementation is definitely
required. Some key implementation factors and challenges for the future are noted.

a. More front end planning, programming, and budgeting is required relative to
the inclusion of RAM factors. In other words, RAM considerations must be
addressed in Decision Coordinating Papers (DCPs), Operational Capability
Objective (0C0s), letters Of Agreement (LOAs), Outline Development Plans
(ODPs), Required Operational Capability (ROC) documentation, and so on,




b,
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Referring to Figure 1, which illwstrates the classical program phases, RAM
should be initially covered in the wnceptual phase of system design and
development, The intent is not to be overly stringent relative to the
specification of RAM requirements at this stage, but to properly address
the major issues pertaining to RAM, In addition, program budgets must
reflect RAM decisions--i,e., increase the procurement dollars slightly to
acquire the necessary RAM and reduce the support dollars to reflect the
corresponding reduction in system support cost,

RAM must be tréated more as a "discipline" throughout the system/equipment
life cycle and in particular, the early design process,

Figure 2 1llustrates the system life cycle process and addresses typical
RAM activities in each phase of the process, Not only are RAM actlvities
applicable in each major evolutionary stage of system development, but
these activities must he closely interrelated throughout! Of particular
significance are the decisions pertaining to RAM which are a part of the
reﬂuirements depicted in Blocks 2 through 8 of Figure 2, Experience has
indicated that ultimate system 1ife cycle cost is significantly influenced
by design decisions made during the conceptual and validation phases of a
program, The overall impact of actions affecting life cycle cost is re-
flected by the '"trend" curve in Figure 3. Further, experience has verified
that life cycle cost is highly influenced by RAM, particularly those costs
associated with system operation and support., Thus, RAM must be addressed
early in the system life cycle if the end product is to be cost effective,

Program management for RAM must he significantly strengthened! More
specifically:

(1) Realistic and meaningful requirements must be clearly specified
early in the system life cycle,

@) Specifications must be improved and more precisely 'tailored" to
meet the actual needs. User inwolvement in the initial preparation
of specifications is recommended,

(3 Requests for proposals (RFP8) must leave no doubt that RAM and per-
formance are "'equals' in priority and importance.

(4) Program managers must be held technically accountable for RAM as
well as for other factors.

(8) Program "checks and balances' must be provided for management
control (and audit for compliance) relative to RAM requirements.
Formal program reviews and technical design reviews must address
major RAM fssues.

(6) TIntegrated test planning is required. As the purpose of testing
Ts to ensUre that the system/equipment design meets all stated
requirements (including RAM), it ls essential that such testing be
accomplished in the proper environment. If the test conditlions
duplicate or exceed the ultimate fleld environment, the test results

5
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will be effective in ensuring that RAM requirements will bc met after
system/equipment deployment, If not, testing will be ineffective,

Additionally, a number of different tests may be accomplished at
different stages in the life cycle, All individual tests must be
addressed on an integrated basis to ensure that the desired information
is provided at the r!%i tIme in the sﬁtem 1life c¢ycle, Too much
testing too early is costly; accomplishing tests too late in the
program could be costly; and redundancies in testing may also be costly.

(7 More producer involvement after the system is in operation is desir-
able. In many instances, the producer should be held responsible for
correcting major field deficliencles.

(8 There should be more innovative approaches to better cmtrnctingn
for RAM, One should cansider the appropriate use of: penalty/incentive
provisions; penalty clauses to cover poor workmanship and design prac-
tices; warrantiss at the giece part level; and meaningful progress pay-
ment schedules., The application of the agﬁrOpriate contractual provi«
sio;:M for RAM requirements should create the desired emphasis relative
to .

Y NP S

(9 Strict and timely enforcement of RAM program requirements is essential.

d. Managers and organizations must be educated relative to the benefits derived
through the proper level and application of RAM, This is perhaps the great- ]
est challenge, since it is felt that many of the problems experienced iIn the
past could have been avoided had the benefits of RAM been adequately under-
stood and accepted. In addition, with the proper education and understand-

irbui;. many of tne desired objectives mentioned above should be readily attain- -:‘.h
able, b

f‘_m%m. The past few decades have led to many advances toward :
focusing attention on reliability, availability, and naintainability (RAM). The ;
next decade is significant in terms of actual realization of the benefits derived :
through RAM, The proper levels and applications of RAM are indeed necessary to i
improve overall system/cost effectiveness at reduced life cycle cost., Address- L

ing the issues outlined in Paragraph 3 is believed to be a step in the right Vo
direction and constitutes a major challenge for the future. th educational know= ;
lgow. persistence, and dedicated effort, it is believed that this challenge can
e met,

10
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PROBLEMS IN ANALYZING PHARMACOKINETIC DATA

Carl Pack and
Alan Hopkins
Departments of Surgery and Informetion Sciences
Letterman Army Institute of Research
Presidio of San Francisco, California

ABSTgAgﬁ. Analyzing drug disposition data using pharmacokinstic
modeling techniques is & commonly used approach to reducing such data
to therapeutically useful facts. MHowaver, certain conceptual and
statistical problems arise as a result of the data analyat's choloe
of (1) objectivea of the analysis, (2) the class of models to fit the
data, (3) the data fitting procedure, (4) the technique(s) for
assasaing goodness of fit, and (5) ultimately, the most acceptable
model, These problems are introduced hera along with some current
tachniques for overcoming them, The advice of the panelista is
presented along with our consideration of their recommendations,

IEPEITOPE 3 TR A RRORE -y Y 8

1, INTRODUCTION. Dosing decisions in medical therapsutics often
involve deciding how much, how frequently, and hew long to administer
a given drug to a particular patient., Such decisions are rendered
tiuch less arbitrary if the therapist has some notion of the time
course of drug distribution and elimination from the body, as well as
a knowledge of the relationship of these quantitative features of drug
disposition to pharmacologic effects., Surprising as it may seen,
exacting knowledge of this amort is known for only a small proportion
of substances currsntly used in madical therapeutics. In the main,
dosing regimens have been developed on an empirical basis by a trial
and error process.

£
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Note., The prasentation of this paper at the Conference included .
examples of problems encountered in analysis of pharmacokinetic data i
in our laboratory. In order to provide space for commenta by the :
panelists (paraphrased by us) and subsequent discussions, numerical :
examples are omitted. The interested reader is referred to the i
paper of Boxenbaum et al.l for examples of pharmacokinetic data :
which typify the issuss addressed in this paper.
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In recent years & general approach to gathering and organizing
drug disposition information has been developed and is frequently
referred to as "pharmacokinetics." Pharmacokinetics has been defined
by Gibaldl and Perrier as '"the study of the time course of drug and
metabolitea levels in different fluids, tlsiéues, and excreta of the
body, and the mathamatical relationships required to develop modals
to interpret such data."2

For the purpose of making quantitative therapeutic decisions,
a pharmacokinatic analysis of drug data can contribute in sevaral
ways, Virst of all, a modal which accura4ely describes the time
coursa of tha drug in the body as well as in particular pools
can be quite halpful in choosing doaing size and dosing frequency.
This presumes, of courae, that tha therapiet has asome notion of
destirable upper and lowsr bounds for drug amounts in the body or poel
of interest. The behavior of linear systems under single and multiple
dose adminiscration as well as oral ingeation and intravenous infusion
18 well worked out.2)3 Certain "derived" parameters, such s
"apparent distribution volume," "body clearance," "terminal elimination
half=time," and "extent of bioavailability' can be operationally
useful in making dosing decisiong, Knowledge of the influance of
pathologic states on these derived parameters can result in optimal
dosing regimens in the face of diseasa~induced alterations in
distribution and elimination.

Eor e sl
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Secondly, insights into drug=body interactions can be obtained
from pharmacokinatic analyses. For exemple, & mathematically sero~
order eliminatinn process implies "saturation" of an elimination
mechaniam, perhaps & hepatic enzyme-syatem, Observation that the
renal clearance and body clearances of a drug are ildentical suggeats
that the kidney is the major elimination organ. A renal clearance %
which is numerically in excess of glomerular filtration rate implies
tubular secretion t glomerular filtration as mechaniams of renal drug
processing., Insights of this nature contribute to therapeutic 1
deciaion=making by alerting the therapist to special precautions he .
must take in designing a therapeutic vegimen for multiple dosing in a
patient with a diseased liver or kidney.

In this paper we wish to summarize some current approachea to f
analyzing pharmacokinetic data by ldentifying some problem areas and
presenting the responses of paneliats to them.
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2., PHARMACOKINETIC MODELS: MATHEMATICAL DESCRIPTIONS OF DRUG
DISPOSITION, Conceptually, the pharmacokinetic model is ususily A
viewed as a system of inter-connected pools or compartments (Figure 1).
The arrows between pools represent drug transfer directions and the
syubols "Kij" are interpretad as tranafer rates. The drug is

considered to be introduced into one of the compartments and body
fluid samples are taken from one or more ovf the pools. Mathematically,
the model may be defined as a system of differential equations.
Linear differential equations (first order) have been the most fully
explored and fraquently applied drug disposition models.3d Although
many drugs undergo apparent first order distribution and elimination
processes, this is not always the case. Apparent rero order or
cocmbinations of zero and first order processes do occur in drug
kinetics, which render models of the Michaelis~Manton type
applicable.® However, for the purposes of this discussion we will
confine our attention primarily to the class of linear models.

Integrated solutions to systems of linear differential
equations assume & certain simplicity and order. An n-compartment
open model (with bidirectional rAdrug transfer between all adjacent
pools) yields a linear combination of n-exponentials:

n

—-—

Dj = Aie-kit Equation 1

im]

where DJ = drug amount or concentration in the JEE pool;
n = number of compartments; Ai’ Ai = arbitrary parameters of the

modal which are various algebraic combinations of the original
"micro''~-rate constants (Kij)’ volume scalars, and initial conditions.

3, MITHODS OF PRARMACOKINETIC DATA ANALYSIS. Development of &

pharmacokinetic analysis usually procedes as follows: (1) serial drug
concentrations are measured in a body fluid following a dose
administration, (2) some procedure is used to choose a class of
probable models which are appropriate for the purpose of the analysis,
(3) the datas are fitted to the models by some procedurs resulting in




At
%
e
R
P
5
fo:

7z
7=

TR

SOME LINEAR PHARMACOKINETIC MODELS
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model parameter estimates, (4) an assessment is made of the goodness
of fit of the model to the data, and (5) a '"most acceptable' model

is chosen, The remainder of the discussion is to focus on some probe
lems sncountered in steps (2), (3), (4), and (5).

Step 2, SEcgigxin; the Clasg of Probable Modals. Chooaing the
class of models to be considered usually involves a preliminary
study of the concentration/time~-course data., If a cartesian plot
teveals a predominatly linear decay profile, then a zaero order
model or Michaelis-Menton model is usually considered, Curvilinear
decay curves are rendered segmentally linear on log-concentration/
tima plots if the data behaves as a poly-exponential. The number of
straight-line segments can be usad as the initial number of
exponential terms to be included in the model. In addition, the
slo and y=-intercepts of thease segments can be used as starting
poinit. .. fterative parameter estimation procedures. Although most
pharmacokin. icists procede in this fashion using manual or partially
automated graphical procedures, attempts have been made to fully
automate this phase of the analysis.5,6

A decision must be made regarding the exact form of the mathe-
matical model to use in the data fitting phase., While data may be
fitted directly to systems of differential equations,’,8 the usual
practice is to use the integrated form of the model. In the case of
linear pharmacokinetic models, this reduces to f£itting data to a form
of Equation 1. The analyst must also decide whether to parameterige
the equation explicitly in the "micro'-rate constants (Kij) or use

the "macro'-rate constants (Ai’ Ai). This last issue was addressed
by one of the panelists (G.B.) and is discussed below.

Step 3, Fitting the Model to Data, Fitting the model equations
to pharmacokinetic data is usually done using an automated least-
squares (L8) program such as SBAAM/ or NONLIN.8 With two exceptions,
currently employed pharmacokinetic models are nonlinear with respect
to their parametars in their integrated forme and therefore require
nonlinear L8 data fitting procedures for estimating parameter
values. The two exceptions are one~compartment open models with
(a) purely zero order elimination or (b) first order elimination
(wvhich can be linearized by a 103e transformation of the eutire

model). Among problems encountered in this stage of the analysis

15
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are (1) appropriateness of the LS criterion for minimization,
espacially as regards deviations of the system under study from
assumptions inherent in the LS approach and the large influence
that aberrant data values can have on the parameter estimates,
and, (2) whether and how to "weight" data for the analysis. These
two problems constitute part of the requirement for assessing
adaquacy of the model (addressed by paneliat R.H.)

Step 4. Asseseing Goodness of Fit. An evaluation of the goodness
of fit of tha model aquation(s) to the data is a highly desirable
procedure in pharmacokinetics. The exact fort that this casessment
takes will depend upon the overall objective of the pharmacokinetic
analysis, models used, and the fitting procedure empleyed. For
example, the analyst may be primarily interested in developing a
deacriptive equation smploying "macro"-rate constants to use in
computation of "derived" parameters, or his prinecipal intent may be
to estimate "macro''=rate constants of a specific compartmentsl model;
these divergant objectives will determine the criteria as well as the
technique employed in judging goodness of fit, If a LS data fittiug
procedure has been employed, use of residual plots and analysis of
residuals for their distributional properties is appropriate.l,9,10
We have employed these techniques to evaluate some of our pharmaco=
kinetic data analyses and found them to be particularly useful. Plotse
of weighted standardized residuals agailnst drug concentrations
reveal patterns which at a glance allow assessment of adequacy of
weighting (stabilising the variance about thu regression line),
model spacificity (search for systematic deviations of residuals from
the regres.sion line) and randomnesm of residuul distribution, Further
analysia of reeiduals alone for distributional properties (a.g. mean,
median, variance, skewness, kurtosis, wpecific tests of normality) has
been enlightening but not always useful. As pointed out by panelist
Dr. R. Hogg, the use of normality tests may constitute too severe a
crite ‘lon for use in an area where the validity of normal aseumptions
are in serious question from the outset. In this regard, it was
suggested by one of the panelists that the BhApiro-Wilkl1 teat for
normality might be reasonable.

B s A

Step 5. Choosing the Most Acceptable Model. Ultimately, all data
analyses must be terminated. This phase in pharmacokinetic data
analysis can be a troublesome problem when no clear-cut model emerges g
mote convincingly acceptable than othera in the class of models
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explored, or when attempts at weighting leave the analyst puzzled
about adequacy of various weighting schemes., 4Analysis '"termination
criteria" do emerge, however, when the overall objectiva of

the analysis is integrated with the other phases as is developed

in the discussion below., It should be noted alsoc that a satisfactory
termination of data analysis is closely tied to the adaquacy of the
overall design of the pharmacokinetic experiment., Optimally, the
experimentalist and the data analyst should communicate in the
experimental design stage so that sampling times, number of replicates,
atc. are designad to "optimize" the information gain from the effort.
This translates into a pre-experimental consideration of models to be
used in analysis of the data and design of the experimental details so
that statistical estimates of model parameters are at minimum
variance within the practical constraints of experimental technology
and costs,

3.  COMMENTS OF P ERS AND DISCUSSION.

Dr. G. E. P. Boxt A central issue which is inherently important

in each problem area cited above is the overall objective of the
exercise., Clear recognition of the goal(s) of a particular pharmaco=-
kinetic experiment leads to clarity in the gubsequent data analysis.

Discussion: On the surface, these ramarks seem almost
unnecesaary, for the thoughtful data analyst should always have a
clear idea of the goals of the exercise. However, Dr. Box correctly
detaected some vagueness in the objectives of analyzing pharmacokinetic
data relevant to the ultimate use of the results., We accept Dr. Box's
perspicacious comments and wish to clte some developments in recent
pharmacokinetic literature which contribute to clarifying the
cbjectives of pharmacokinetic analyges. While postulating a class of
pharmacokinetic models in terms of compartmental schematics with
specific inter-compartmental connections is intellectually attractive, d
the sffort required to test, evaluate, and find an acceptable one may :
be far in excess of that necessary to fulfill the clinical goals of
the experiment, If knowledge relevant to making dosing decisions is T
the principal purpose, then a data analytic approach which
concentrates on sstimation of macvo-parametar models may be adequate.
Wagner has recently published a seriaes of articles which argue }
these points forcefully and which propose simplified data analytic A
techniques for computing useful pharmacokinetic parameters,l2,13,14




If the analyst perceives that the objactive of the analysis
is to provide tools for prediction and for computing "derived"
pharmacokinetic parameters, and not to test apecific compartmental
models which were derived from differential equations, then he is
not restricted to exclusive use of the class of poly-exponentials.
For example, Wold et al,l3 propose the use of cubic spline procedures
for computing area under the curve and terminal drug decay half-time,
and give a specific pharmacokinetic example to illustrate the method.

DR, R. V, Hoggt L8 data fitting is mot the only available option
and "robust' statistical procedures should be considered. {[In his
formal presentationlé "On Robust SBtatistical Procedures,” Dr.Hogg
outlined several possible alternatives to the LS approach to parameter
estimation,]

Discussion: Use of robust statistical procedures indeed offers a
potential contribution to analysis of pharmacokinetic data. Although
these approaches pose computational difficulties, they are attractive
both from the point of view of (a) relaxation of the more restrictive
normal assumptious inherent in LS procedurea and (b) minimization of
the effects of "erratic'" data (outliers). We have not yet applied any
of these approaches to our own problems, although we are aware of one
group which has, Frome and Yakatal? used both LS and least-absolute=
deviation criteria in obtaining parameter estimates from the fit of a
one-compartment open first order model to a set of pharmacokinetic
data.

Dr. 8, Geisger: Consideration should be given to the use of the
Cp atatisticlB and predictive sample reuse methodsl9-21 for assessing
goodness of fit and for developing data analysis termination strategies.

Discussiont: The Cp statistic was originally derived for use
in wmaking decisions about the number of terms to include in
linear modela where normal assumptions hold., Therefors, use of
thie approach for deciding among several poly-ezpruential models
must he viewad as an ad hoc procedure, the theoretical baails for
which remains unexplored. Neverthaless, the technique is appealing.
Given that the "total squared error" computed from a nonlinear
regression boars some inexact but semiquantitative relationship to
the "true" squared blases and squared random errors, then plotting
Cp versus p for various pharmacokinetic modelst may yield some

+ here p might be considered the number of parameters of the model.
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basis for choice.

Use of predictive sample reuse methodology for assessment

i of different predictive functions is apparently a rather rccent

: -development in statistice. The available papers on predictive

v sample reuse are not easy for the non-atatistician to understand,

. therefora, & brief description of technique in the presant context
[ will be given. Like the Cp statistic, a number associated

i with a given £it of a specific model to data is desired which will
: sllow diacrimination between models such that a moat reliably
predictive model may be identified. This number, call it PP. nay

be computed using the following "data reuse' approach. Model j

is £it to all the dats less the first datum by LS and the residual
sum of squares ls recorded (RS5)). Thae procedure is repeated

after replacing the first datum and omitting the second data

point and the rasulting R88: is added to the first. This is repeated
by replacing the ith data point and removing the (i+1)Eh datum

n
and so forth until 1"p - X; nssi. The entire procedure is

i=
replicated for each proposed model, Then all Pp may be comparad
and model p*, beyond which PP does not get appreciably smaller, may

be chosen as an acceptable model, We have no experiencs with this
technique but it may be a useful data analysis termination strategy.

FINAL COMMENT, While following up on recommendations of the «g

panel, we ran across two traatises generally covering the areas of :

, goodness-of=£fit and data analysis terminaticn strategles which we N
! ‘ feel are important to pass on to the reader. They are Daniel and p

Wood's book (see ref. 18) and a recent paper by Hocking.22 These .
sources contain discussions of other tachniquea which may be applica- 8
ble to the problems addressed in this paper.

AQENQ&LEQQE%&B%&. We wish to express our sincere appreclation
to the members of the panel for their thoughtful consideration of
our problems in analysing pharmacokinetic data and for their thought- o)
provoking comments., Any errors in paraphrasing the panelista’

comments or misinterpretation of their advice remain the responsibility
of the authors., In addition, assistance in preparing this manuscript
of Dr, Lewis Sheiner of the University of California, San Prancisco

is gratefully acknowledged,
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EFFECTS OF DIETARY BRAN AND CELLULOSE ON SERUM LIPIDS

Charlotte M. Hcfgia (1); Daniel H. Connor (1)
Frank A, Frankiin, Jr., (2); Walter D, Foster, (1)
Samuel M. Wylde (3); Joe M. Blumberg, (4).

$1 Armed Forcas Institute of Patholog¥. Washington, D.C. 20306
2) The Preventive Medicine Office, Walter Reed Army Medical

Canter, Washington, D,C. 20306; (3) Ener-G«Foods, Inc., Seattle, WA
ggagg; and (4) Oscar B, Huntar Memorial Laboratory, Washington, D.C.

ABSTRACT. Unprocessed bran (bran) and carboxy-methyl cellulose
(CMC) were added to regular diets of overweight and normal weight volunteers
to determine the effact on serum 1ipids. Downward mean trends of cholesterol
and triglyceride levels were found in all groups taking branm and CMC after
twalve weaks except the ovorweight men ingesting CMC. Downward mean trends
for cholesterol ranged from 0.74 mg/100 to 1.65 mg/100 per week and for the
triglycaride from 0,36 mg/100 to 4.78 mg/100 per week.

1. INTRODUCTION. Coronary atherosclerosis 1s the leading cause of
death in the United States.?'E In spite of this atherosclerosis was rare
in t21: country before 1500,3 and remains almost unknown 1n some developing
countries.,

Dietary factors are under constant scrutiny, and a number of researchegs11
have proposed that lack of dietary fiber may be an important causal factor,°*
because fiber {s abundant in the diets of rural people in devoloping countries
where atherosclerosis is rare and has decreased in the diets of westerners
during the rise of fatal atherosclerosis.

Dietary fiber could lower sarum 11pids 1n various ways. It {s hygroscopic
and might absorb emulsified 11pids taken with the diet. Dietary fiber would
also absorb cholesterol secreted in the bile and thus reduce 1ts reabsorption
in the small intestine. Increased dietary fiber also reduces gastro-
intestinal transit time and thismight also reduce absorptions of 11pids.

In an attempt to determine whether dietary fiber reduces sarum 1ipids,
we performed the following study.

2. METHODS. Forty-four healthy nen ages ranging from 23 to 65 years,
volunteered for a 12-week study. A1l were on duty at the Armed Forces
Institute of Pathology wher the study began. Most were pathologists, and
the remainder were trained in one of the medical spec1a1t1as. 11 under-
stood the purpose of the study and were "dedicated" volunteers. They
continued thair ro?uTar diets, did not alter thair 1ife styles, and
maintained body weight.




The men were divided by height/weight ratio and age into three

. equivalent groups--control, bran and cellulose. Each member of the bran
group added 86 gm of unprocessed bran to his daily diet--28 ?m (1 ounce)
with breakfast and 28 gm with his evening meal--a daily sup? ement of
about 6 gm of nonnutritive fiber. Each member of the cellulose group
added 6 gm of cellulose* to his daily diet--3 gm at breakfast and 3 gm
with the evening meal. This is a1l nondigestable, $0 both groups ingested
approximately 6 grams of nonnutritive hygroscopic substance, These
supplaments were ingested for 12 weeks.

Fasting blood samples were collected at intervals of two weeks; sarum
cholasterol determinations were done every two weeks; and serum triglyceride
determinations, every four weeks. $The control group, however, had no
triglyceride detarminations on the fourth week.)

Durfng the course of the study, 9 of the 44 men dropped out-- 4 were
transferred, 4 could not tolerate the unprocessed bran, and 1 man

substituted sweetened bran ("Al11 Bran") for unprocessed bran. Of the remain-
ing 35, 18 had a "normal" weight and 17 were overweight. Linear regression
to estimate the trend of each man's serum 1ipids was calculated and the
trends were averaged for each group. Because only slopes were avaraged, the
varfation introduced by diffarences in 1ipid levels from subject to subject
was removed--a valid approach since each subject acted as his own control

in the trend analysis. A refinement of the analysis involved the recompu-
tation of the average trends per ?roup with each subject's degree of
consistency of trend used as a weight in obtaining a weighted-average trend
(where degree of consistency was measured as the reciprocal of the variance
of the siopa). The wci?htod-avorage. while conferring greater 1mgortance

to consistent trends, also served tc be selective, 91v1nE some subjects
considerable prominence, Therefore, special care was taken fn the 1
interpretation of the weighted averages to ensure that they were also -
representative of the group.

The probabilities were obtained from Student's t-test on the average
trends (wetghted and unweighted) for each ?rouﬁ under the null hypothesis of
zero trend against the one-sided, alternative hypothesis of negative slope.

iy e

s

3. RESULTS. The triglyceride levels were sharply lowered in the
normal-weight subjects eat nq bran and celluluse. The group of overweight ")
subiectl eating bran and celiulose and the control group did not show this :
striking trend. See Ftg. 1. In addition mean cholesterol levels fell in !
the $roup of overweight men taking bran. The graphs in Fig. 1 are means of 4
the 1ndividual trends sc that the variation in 11pid levels from subject to :
subject was removed, !

*Purchased as sodium carboxy-methyl-cellulose tablets, 0.5 gm, from '
Interstate Drug Exchange Mfg. Co., Platnview, Long Island, New York 11803 k




Using a preliminary cutoff at P < .10, four of the seven negative
slopes in the bran and callulose grouPs were statistically significant,
See Table 1. Expressed as a percentage of the initial levels, the
reduction was 758X for the group tak1ng CMC and 60% for tha group taking
bran. Three of the mean trends that failed the statistical cutoff were
?roups of overwaight men. Because of the greater vartability of serum

{pid trands among the ovarweight men, a refined an2iysis was performed
consisting of computing welghted-average trends using as weights the
degree of conststancy of each individual's trend. The weighted trends
generally show a numerically stee?er rate of raduction of serum 1ipids
together with enhanced statistical probabilities. Thus, six of the eight
trands for the bran and cellulose groups were statistically significan
(P < .05) downward trends. The only non-downward trend was the overwéight
man ingesting CMC whose serum cholesterol unaccountably increased. This
contrasts with the decreased triglyceride level for thls same group.

Since each subject served as his own control--his pretreatment level
was the initial point for his own trend--no reference thus far has heen
made to the actual control groups. They served to determine whether an
unknown or subconscious factor influenced serum 11pids during the study.

The average trends for the control group revealed no such factor. See

Table 1. Ona of the we1qhted-averagc trends~=the tr121ycer1d| Tavels in

the normal-weight control group--did fall with P = .12, To be conservative,
therefore, this slope was subtracted from the slopes of the bran and
c:11u1os: groups for the normal-weight men, 1n computing the probabiiity
statements.

Laboratory variation, expressed as a ratio of the laboratory variance
to the residual experimental variance, was 1/16, a nog11§1b1c quantity as
a possible factor affecting the analysis and interpretation of these data.
The standard deviation for the Taboratory, calculated over each two-month
period, was found to be & mg/100 m1 for serum cholesterol and 8 mg/100 ml
for serum triglyceride.

4, COMMEQT. A number of studies rogorting the effects of whole or
fractional grain products on serum 11pids have produced varied results,

but the majority lup?ort th? vizw that whole grain and whole grain products
tend to lower serum lipids, §- In our study CMC lowered the average
triglyceride lavels by 78% in normal-weight subjects, and bran lowered the
average serum triglyceride levels of normal-weight subjects by 60%. We do
not know the mechanisms by which bran and CMC lowered serum 1ipids. Some
possible mechanisms suggest that nonnutritive substance (1) increases the
excrnt{gn og bile actds by increasing catabolism of cholesterol in the
1iber,13 (2) shortens gastrointestinal transit time, thus allowing less

time for 11q1ds to be absorbed, and (3) absorbs water, bile salts and other
solutes including 11pids, thus reducing absorption of 11pids. None of these
hypotheses howavcr.lxpla{ns the fact that serum triglycerides in our normal-
weight men dropped more quickly than serum 1ipids in our overweight men
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ingesting bran and CMC. If nonnutritive substance lowers serum triglycerides
more quickly in non-obese men, then other dtetary factors probably play a
role. One of these could be the ingestion of excessive amounts of refined
carbohydrates by the overweight men. Sugar, for example, not only ..
contributes to obesity but ts an tmportant cause of hypcr11p1dnm1a.23

Our study supports the opinfon that nonnutritive substance (bran
and CMC) lower serum 1ipids. And 1n particular, we found that the most
striking lowering effact was on the serum triglycerides in men taking
CMC who weras not overwaight.
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{ | Table 1. Mean Tends (b, mg % per week) of Serum Trig1ycer1de and
. Serum Cholesterol Levels as Determined on 35 Volunteers

. for 12 Weeks.
Averages Weighted Averages
No. _
ot 5 s(B) Prob. Bwt s(bW) Prob.
o L]

Serum Triglyceride

Controls
Normal Weight 9 -0.43 0.83 NS -0.583 0.30 0.12
Overwetght 5 «0.33 1.70 NS 0.80 1.36 NS
Bran
Normal Weight 4 .2.88 1.77 0.08 -3.48 1.69 0.05
: Overweight 6 - .60 1.86 NS -2.06 0.71 0.01
Celiulose
Normal Weight 5 -4.78 1.95 0.02 -4,12 0.90 0.000
Overweight 6 -0.36 1.72 NS - .86 0.38 0.02
Serum Cholestero]l
Controls
Normal Wetght 9  0.22 0.70 NS 0.09 0.56 NS
Overweight 5 0.37 0.78 NS «-0.78 0.62 NS
Bran
Normal Weight 4 -1.49 0.96 0.07 -3.42 0.59 0.001
o Overweight 6 1,66 1.11 0.08 -2.85 0.68 0,001
‘:iA% Cellulose
| Normal Wefght 5 -0.74 0.85 NS -0.98 0.75 0.10
: \ Overweight 6 1.0 0.76 NS 1.562 0.80 NS
| * Swib
: b = pSx ¥ hiud 14
Egii‘ b = 5wy

=

V(B)= £sZy.x(D.F.)
zax2  (D.F.) V{b,)= 1/5w;
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ANALYSIS OF AN ERROR-TIME RESPONSE PERFORMANCE

¥ PRy e ram

Michael Hacakaylo
U.S. Army Electronics Command
Night Vision Laboratory
Fort Belvoir, Virginia

ABSTRACT, The analyses of the error-time response performances of
groups of naive subjects permitted to make discrete right/wrong decisions
are presented for three experimental display panels of increasing com=
plexity. The panel designs wera based on a circular reprasentation of
light bulbs, where the lights correspondad to the angles ¢f a circle. The
first panel design consisted of a ring of lights that portrayad one con-
tiguous angular representation by the lights. A contiguous representation

_ of light was defined as a domain. The complexities of the second and
. i third designs were increased to two contiguous semicircular representations
of the ring of lights, where for sach dasign the semicivcular representa-
tives were defined as two domains. The function of the panels was to
display the azimuthal angular source location of infrared lasers when
detected by infrared detection systems.

The subjects were randomly selected from a large population having
no prior knowledge (zero degrae of learning) of the panels and separated
into three groups of sevan subjects each. Each subject evaluated two
of the three panels in an ABBA mannar for o set of six
trials per panel. Such a group of subjects, constrained to the same
degrea of learning of the panels and limited to the one sat of trials, is
defined as an gigengroup for this analysis.

The subjects were instructed to mark on a response panel as accurate-
ly and rapidly as possible the corresponding angular light of the stimulus
panel, yiz, the display panel. The response panal was & five inch circle
drawvn on a 8 inch by 10 inch paper.

The number of errors of the eigengroups was analyzed ae a function
of time for each of the experimontal designs. It was found that for the
experimant, the error-time response equation is log E = =2n log T + K,
where E is the number of total errors per eigengroup, n is the number of
domains of tha stimulus panel, T is the mean time for the total number of
trials for each eigungroup per system, and X is a constant, It was nece
@asary to introduce new terms, i.e., domain and eigangroup to unambiguous=

R

§ ly define the stimulus panel and interpret the results consistent with
B the equation.
. ¥
§ 1, INTRODUCTION., The purpose of this paper is to present an error-
o time analyses of the designs of the informational display panels of
. infrared detection systems. The systems detected and displayed tha
# azimuthal angular position of a laser source to a crew during a laser-tank
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engagement as shown in figure 1. Since the error-time response perform=-
ance of a well=trained crew would more apt reflect the selectivity and
training of the crew, an cvaluation procedure was required that would
teflect the panel desi s rather than the personnel capabllity, training
and cumulative learning process. To lmplement the procedure it was
decided to cmploy naive subjects who had no knowlodge of the systema,
exposed only to instructional procedures (without preliminary learning
trials) and constrained to make one and only ovnw declslon per trial. The
declslon would be considered right or wrong, The resultd should be
different than the cumulative learning performance where error declisions
wore allowed until the correct decislon was made, Cagnd and Foster (1949),
In other procedures, uvrrors woere treated as partially correct answers
(Fitts and Seeger, 1953), and the error-time response dato are statistie
cally treated to determine the mean and standard deviation of the error-
time parameters. These parametora nre iInterpreted as how far [rom the
correct value the errorg are as o function of learning and response times.

. The determination of the number of discrete errors as a functlon of time
for a group of asubjects, who were not trained nor subjected to the
cumulative learning process, 1w not apparent in llterature.
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In this paper, the error-time response performance of groups of
individuals subjected to only onae set of trials resulted in a frequency-
distribution curve which was different than a cumulative performance curve.
The mathematical analysis of error-time response data of random groups of
individuals subjected to the one-trial set mathod appears to be signifi-
cantly new, To assure that the groups wera not subjected to a cumulative
learning process, sach subject was instructed as to the procedure and
then dismisged after avaluating tha panals. In this manner, each group
was cotnspiderad to be of the same or ifdentical state of conditioning or
training for all sets of trials. Buch groups are defined as aigengroups.
(The word, sjgen means proper, inherent, peculiar). In a fuller context,
tha error~time response performance of eigangroups is properly satisfied
only when the groups are subjected to the ona-set trial method.

2, METHOD. The error-time response performance data were obtained
on panel designs similar to those of Fitts and Seeger (1953). Due to the
similarity, the Fitts and Seeger experiment is briefly described, Theair
expariment, in essence, was to datermine the learning skills of matched
groups of individuals to a singlefold response., The stimulus panel had
a ring of eight equally spaced light bulbe. The atimulua was a light
flashing on. This action keyed the subject to associate the light with
ths angular position on the ring. The response panel had a stylus. The
rasponse was the action by the subjeact in moving the stylus to the
corresponding position on the response panel as the interpreted position
of the atimulus panel, (Two variations of the stimulus panel were
geometrically configured with increasing complexity to simulate the ring
design., The corresponding response panels were also increased in com=
plexity. The 8-R compatibility of those designs werae also detarmined.)

The panel designs reported here were also based on a circular repre~
sentation of equally spaced light bulbe. BSince the physical entity is
the light bulb embodying the etimulus, the physical entity (light bulb)
is defined as the giimulant. The stimulant and the configurational
display of the stimulant (ring of light bulbe) on tha stimulus panal is
defined in this paper as the pigpificand. The significands were geomet-
rically configured to increase the complexity of the stimulus penel for
the singlefold response. The thres designs ars now described.

Panel A+ The eignificand of the panel was a three and one-half inch
diameter ring of 36 aqually aspaced light bulbs as portrayed in figure 2(a).
The ring was positioned on the front surface of a box 4 inches wida,

8 inches long and 2 inches desp. The light bulbe were angularly marked
in degrees from gero to 360 degrees in ten degree increments in a clock=
wise direction with zero at the top. 'Thae continuous clockwise direction
of the marked light bulbe is considered as a domgin of the significand,
i,8., one contiguous representation of the stimulus panel as portrayed in
figure 2(b). When a light came on it signified the angular position on
the ring,
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Eansl B The significand of the panel wes a three and cne~half inch
diamater ring of 36 equally spacad light bulbs marked in argular mils as
portrayed in figure 2(a). The ving was positionad on the front surface
of a box identical in dimensions as in panel A. The light bulbs wers
angularly marked in =ils Zrom zero to 3200 in 177.78 mil increments in a
counterclockwise dire-iion with zaro at the top for one-half of the circle.
(Thare are 8400 mils par 360 degreds of a aireale, thersfore, sach position
corresponds to 17./.76 mile as well as 10 degreos,) The angulat marking
started at gzero again at the bottom, and continued Iin the countercloackwise
direction to 3200 at the top, The two halves completed the circle, The
two counterclockwise directional iterations of the marked light bulbs are
considered as two domains of tha significand, 1.8., two contiguous repre-
santations of the panel as shown in figure 2(d). When a light came on, it
signified the angular position on the ring.

C. The significand of the panel was a stimulant in the form
as an alphanumeric readout display as portrayed in figure 2(e)., Thae
display window was positioned on the front surface of a box of identical
dimension as in panel A, The first of three characters was a latter, L
or R, and the next two ware digits ranging from 00 to 32. The letter R
indicated a circular representation in a clockwise dirention. The numeri-
cal values indicated the angular poaition in 100 mil increments (aquivalent
to 5.625 degrees) with rero at the top and increasing to 3200 mils for one-
half of thae circular rveprasentation. The letter L indicatad a circular
representation in o counterclockwise direction., The numerical values
indicated the angular position in 100 mil increments with zero at the top
and incremsed to 3200 milm for the complation of the circular representa-
tion. The one clockwise and one counterclockwise directional raprasenta-
tions of the circle are considerad as two domains of the significand, i,e.,
two samicircular representations of tha stimulus panel as shown in figure
2(f£), When an alphanumeric readout came on, it signified the angular
position on the circular repressntation,

nglggﬁlg_g;ggl. The response panel was identical for each panel.

A five inch olrele was drawn on a 8 x 10 inch eheet of plain paper. The
clircle was divided inte quadrants and marked into degrees and mils as
follows: Zero degrees (0°) and mero mils (0 mils) were marked at the top.
In a clockwise direction, each quadrant was successively marked 90°,

1600 mils; 180°, 3200 mila; 270°, 4800 mils; and again at the top, 360°,
6400 mila. A pencil was used for marking sngular positions with an "X"
on the circle.

3. gggggg%gg. Twanty-one U.8. Army enlisted men of all ranks, who
vere not formally matched but had no prior knowledge of the experimental

panels, were randomly selected and separated into three groups of seven

subjects each. One ut a time, each subject was thoroughly briefed on the
opaerational procedures of two presalected dimplay panels just prior to
evaluation., The subject was instructed as follows: As quickly and as
accurately as posasible, read the angular reprasentation of a light (or




digital readout) and the approptinto direction when the stimulus light
came on, and mark with an "X" that angular position on the eirele nf the
sheet of paper. The position of the intersection of the "X" was consid-~

i ared to be the angular position. For familiarization the subject was
given two preliminary zuns 1f so desired.

I
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Each subject performed a series of six trials on the two preselected
cases in an ABBA manner for a total numbar of 12 trials. On a prepro-
grammed schadule of randomneas, sach subject read the angular position
and marked the circle as quickly aud accurately as possible, There ware
threa "X'''s per response (paper) panel since one panel was supplied for
each A, B, B, A sequence. The time interval from when the light came on
to when the subject markad the panel was measured to 0,001 second, how=
H ever, the time for each trial was recorded to the nearest 0.0l second, It

| is asoumed that the reaction~-time error introduced by the investigative
”Lﬁ team for the time measurements was constant for the trials,
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Upon completion of the set of trials, each subject was dismissed.
Care was taken to insure that subsequent subjects for evaluation did not
associate with any of the previously dismissed subjects.

I gesad Al L o
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The diaplay panels were evaluated in a room that consisted of a 36
inch high bench, chair, and assoclated squipment requirad to activate
. the lights of the panecls. The panels, two at a time, were positioned one
i on top of the vthar on the bench in the following sequenca: for eigen~
N group 1, panel A on panel C; for eigengroup 2, panel B on panel C; and

: for eigengroup 3, panel B on panel A, It is to be noted that the sequance

for eigengroup 2 was incorrect to maintain proper countarbalancing block
! order, However, this flaw did not appear to be avidenced in the analyses
; as described later, The only persons permitted in the room were the
; subjecy and the investigative personnel.
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For each stimulus panel angle (light), three angular resolution ranges ;
for determining the accuracy of the response panel angle "X" were con= ;
sidered to be a) +40 degreesa; b) +20 degrees; and c¢) +10 degrees, The E
readout anpla was coneildered as an error if the response angla was greater E
than the angular resolution for each stimulus angle, i.a., sach responase -
angle would be a right/wrong decision for threa ranges.

The angular position marked on the response panels (from the pre-
progerammed readout angles) were measured in degrees., This was done by 4
using a transparent template graduated to 0.5 degres which was superimposed i
on the marked response panels. The accuracy of the marked angle was
measured to +0.5 degreess. A

The number of errors that each subject made with respect to each of
tha three ranges for a set of aix trials for each panel wers counted,
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The average timaw of the eix trials for the panels that each subject
avaluated vere datermined, The number of errors and associated time for
each of the 252 trials were tabulated for data reduction.

4, RESULTS. The mean time and number of angular errors in each
range for the sat of six trials for the subjecta are shown in Table 1,
The table separates tha subjects in thelr reaspective eigengroups for the
panels evaluated. The average of the mean timas am well am the total
errors per range for the groups for each panel are also shown in Table 1.
Note that the errors are considered as completed avents and that the
astandard deviation of the angular arrors have no significance in this
analysis.

An accepted method for the portrayal of the frequency-distribution
data of Table 1, is to plot the number of errors (per subject) as a
function of the mean time (per subject)., To illustrate the method, plots
of the number of errors in the range +40° as a function of the mean time
of the subjects of the groups for each of the panals are shown in figure
3, The data presented in such a faghion cannot be clearly interpreted.
The only two significant observations that can be nade are as follows:
The fivat is that the error-mean time response performance curves of the
two eigengroups for the same design exhibit some dagree of similarity,
and the second is that most of tha arrors occur between 3 and 5 sacond
time interval.

However, Lf the data are plotted in & different fashion, a strikingly
new sat of parumetric curves are genarated, If, for the data of Table 1,
the number of total errors, B in the range +40° per eigengroup is plotted
as a function of the mean time on & log E ve log T scale, it can be seen
that two distinct linear curves are generated as shown in figure 4, The
elgengroup datum points for panel A fall on one line, and eigengroup datum
points of panel B and panel C fall on a mecond iine. The two curves ara
separated by at luast one order of magnitude in the error count, and this
separation indicates that there is &n uniqueness between panel A and
panala B and C.

The aurve for panul A can be expressed aa
108 B\ 40
whera EA.ho is the total number of errors +40" per migengroup for panel

“ -2 log T, +1.16 (1)

A} TA is the mean time per eigengroup of panel A} and 1.16 {4 a conmtant,

The negative sign i{s interpreted to mean that as the amount of time f{g
increaned for reading the stimulum panel angle and marking the "X on the
repponse panel, the number of ertors decrease,

Tk




HUMAN PACTORS DATA, N»252
Bigengroup 1

Panel A ‘ ‘ Panel ¢
Subjact Mean Time Angular Erroras Mean Time Angular Errors
(8ec) (Number) (Bac) (Numbet)
. 340%  $20% 310° £40° #20° #10°
1 5.85 6 o0 0 5,86 1 1 1
2 2.83 0 2 4 3,45 0 0 1
3 5.10 0 1 2 5,84 1 1 1
4 2,58 0 0 1 2,96 1 1 1
5 2,95 1 1 2 3,32 4 5 6
6 4.68 0 0 2 3,98 0 0 1
7 217 ') Y 4.86 i 4
+87(Ave) 1 [} 1% 4,35(Ave) 8 10 1%
Eigengroup 2
Panel B Panel C
Subject Mean Time Anpular Errors Mean Time Angular Errors
(Se0) (Numbar) (8ec) (Nunbes)
£40%  +20° #10° £40° 20° $10°¢
8 3,78 0 0 1 3.51 1 1 1
9 4.38 1 1 3 3,37 0 0 0
10 4.11 0 0 1 3,66 0 0 0 4
11 5.08 0 0 1 3,87 0 1 3 i
12 4.59 0 b} 2 4,23 0 1 1 i
13 1.5 0 1 2 10,08 0 0 0 t e
1 44 2 4 7 2 3 3 17
5.52(Ave) % [] 15 193 (Ave) 3 6 10 i 4
Eigengroup 3 i E
Panel B Panel A 3
Bubject Mean Time Angular Errors Mean Time Angular Errors L 5
(8ec) (Number) (Bac) (Numbar) Y
$40° $20°  #10° £40° £20° 10¢ P!
15 2,93 s s s 2,90 o 1 & L
16 3,34 4 6 6 2.75 0 1 3 Loy
17 3.85 3 4 5 3,49 1 1 4 o
18 1.87 4 6 6 0.98 1 2 6 j q
19 2,79 3 5 6 2.5% 0 2 4 P
20 3,24 1 1 g 3.18 0 2 4 I
21 4:26 9 ; 2 9 & !
3,26 (Ave) 4 5 6 %Tg'f(m) 2 9 2 P
Tablae 1. Mean time and number of e ors for each subject per eigengroup 3
tabulated for euch angular resolution range per panel. )
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The curva for panel B and panel C can be expressed as

log EE - a4 log Tl.c + 3,38 (2).

yCy 80

where 33.0.40 is the total number of errors 140°, per eigungroup for

panels B and Cj Ty o 18 the mean time per sigengroup for panels B and C;
[ ]

and 3.38 is a constant.

The similar plots of the number of total errors +20° per eigengroup
are shown in figure 5. The curva for pansl A can be expressed as

log EA.ZO

whare EA.ZO is the total number of srrors +20° per eigengroup for panel A,
TA is the mean time and 1.86 ia & constant. The curve for panels B and ¢

- -2 log T, + 1.86 " (3)

can be exprassad as

log EB.C.ZO = =4 log TB.C + 3,57 (4)
where the terms have the same comparable definitions as for Bq., (2).

The plots of the number of total errors +10° per elgengroup are
shown in figure 6. The aurve for panel A can be expressed an

_'-.._;-ku'ﬁ NI

log EA.lO w =2 log TA + 2,35, (5
and the curve for panels B and C can be expressed as -
log EB.C.IO = =4 log TB.C + 3,72 (6)

where the terms are defined similarly as those in Eqm. (1) and (2).

3 i A e = i (82l

The general aquation can be axpressed ans
log £ = =2n log T + K (N E

vhere E is the number of total errors par eigengroup, n ls the numbar of i
domaine of the significand of the stimulus panel, T is the mean time for
the total number of trials for each eigengroup per systam, and K is a
constant. The general aquation and the definitions of the terms are
limited to the results and diacussions of the above analysea of the error-
time response performance for a singlefold reaponse.

5. DISCUSSION. The purpose of thie experiment was to evaluate the
human factors of three variations of a display panel by subjects with mero
(minimal) bias, The mathematical analysis of the error=time raesponasa »
performances of groups of "unbiased" individuals resulted in a new
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frequency~distribution equation. - In order to maintain clarity in deseribe-
ing the experimental deaigns and procedures, it was necessary to introduce
and defihe new parameters which would be relevant to ‘the analyses of thé
panels and interpretation of the equations. The three display panels were
desighed to perform the same response function, but the complexity and
domains of the significands of the stimulus pansls were increased., In
partisular, the'masthdds of the angular readouts were changed from the
circular display of degrees in one direction of one domain of panel A to
the two circular ssquentiel displays of mila 4in the same direction of two
domains of panel B, and finally to the alphanumeric readout of nils
generating two semicircular displays in opposite directions of two domains
of panel C. ‘

The subjects, selected at random for this experiment were considerad
to be identical, but not matched with reapect to knowledge aund training
associated with the designs. (Random groups are comprised of subjects
which would be considerud representative of a large assembly of those
subjects, whereas matched groups are defined as groups comprised of those
subjects whose evaluated charactaristics have been found to be similar
within some norm of a criterion. Both groups can be conasidered an eigen~
groups if they are constrained to being nearly the same state of knowledge
and training, and evaluated once and only once for one set of trials for
each of the experimental demigna,

The curves for the threa error ranges for the panel having one domain
(panal A) can ba portrayed by an empirical equation, log E = £(log T)
with each having the same elope of =2. The displacament constant increases
from 1.20 to 1.86 to 2.35 with increasing angular readout resolution. The
curves for the three ranges for the panels having two domains (panels B
and C) can be portrayed by the same empirical equation as above with aach
having a slope of =4. The displacement constant increases from 3,38 to
3.57 to 3.72 with increasing angular readout resolution. Since the slope
of the gunaeral aequation is -2n, where n is the numbar of domains, and the
constants, increasing with increasing angular resolution as well as number
of domains, it appears that the general equation is an sxplicit function
of both the number of domains of the panels and the resolution of the
responsa data. This implies that the gensral equation is independent of
the amount of training of the eigengroups. However, it is logical to
expect that for a given number of trial sets, the total number of errors
per eigengroup would decrease with increassed level of training. Since
it is not known how the training would effect tha aquation, if at all, it
is asgummed that the general equation is an implicit function of training.
In order that tha error-time responsa experiment to be meaningful, it is
raquired for the number of trials sets bs sufficiently large mo that at
lesst one exror be committed per trial set for each of tha experimental
designs.
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The increased complexity, 1.,e., changing the significand from a
circular rapresentation of two domains of panel B, to an alphanumeric
rapresentacion of two domains of panel C had no apparent influence or
deviation from the linearity of tha curvea raprasenting thoss panels.
The lack of deviation is not unexpected as a result of the Gagné and
Foster (1949) studies.

‘It 48 realized that the analyses presented hars are of 4 small sample
evaluation of groups of individual subjects. However, the analysis of
variance indicates that trials of the right/wrong decision-timed response
performances on the thras aystems ars valid (F(S.GS) w 5,08; p<0.001).

The analysis of variance for the systems (F « §,84; p<0.001)
(2,156)

indicated that the aystems were different, and that TrialXSystem
(F(10.156) « 0.39) was not significant. Some learning did »ccur for the

subjects (six trials each), howaver, +the learning did not interact with
the systems, and all subjects learned equally to about the same degree.

From the above discussion, it is postulated that the gensral egquation
is valid for other error-time response sxperiments similar to those
described in this paper. Efforts were mede to apply the cerror-time
response data of Gagné and Foster (1949) and Fitts and Seeger (1933) to
the analysis. This was done for the purpose of subjecting Eq. (7) to
experimental results of other investigators for corroboration. The error-
time response equation could not be genarated from the above sources due
to the following reasons! (1) the mean time was measured only for the
correct choice which included the wrong choices until the correct choice
wao made; (2) tha total number of arrora were determined as a function of
preliminary and accumulated training; and (3) most importantly, the error=-
time measursments were not made on elgengroups, i.e., thoae groups having
identical prior knowlaedge of the panels, atud the same acquired learning
for each set o¢f trials for the entire series of trial sets. Further
investigational work is required tv subject the general equation to
experimental verification. .

6. SUMMARY. The experiment prasanted here is similar to those
raported in literature, and the stimulus~response procedures ara standard
practices. It 14 known, in general, that as a subjaect takes lass time to
make decisions, considerad to be right/wrong, the number of arvors
increases and the standard deviation becomes larger, However, the
experiment here diffars on two isportant aspects with respect to ths
control of the subjects and data analyses, The firaet is that the subjects
were saparated into groups of equally biased knowledge (no pretraining)
concerning the panels and were not subjected to a cumulative learning
process for the entira series of trial sets. The second aspect is that
an arror was considered as a discrete response of a right/wrong decision
and the errors were anzlyzed a9 a function of the mean time of the total
number of decisions par eigengroup. The analysas of the error-time
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equations necessitated the introduction of naw parameters in order to
unambiguously define the stimulus panels and interpret the procsdures and
rasults consistent with the squations, The general equation is a nmathe-
matical expression which, for this experiment, describas the relationship
between the numbar of errors of right/wrong decisions and the mean time

in making the decisions.

7. Aﬁﬂﬁgﬂkﬁﬂﬂﬂlﬂx; The author wishes to thank Mr. Juff Abtaham and
Specialist Fifth Class David Herdman, Electronic Test Comumand, Yort
Huachuca, Arizona for assistance in carrying out the test program, and to
Mr, Richard Plaherty, Night Vision Laboratory for the analysis of variance

as wall as valuabla discussions.
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RELIABILITY ANALYSIS
OF AIRFIELD LIGHTING SYSTEMS

' Frank Kuo
Edward S. Lindow
US Army Corps of Engineers
Construction Engineering Research Laboratory
Champaign, I11inois

ABSTRACT. The raliability analysis of a system with muitiple types
of components under maintenance is a complex problem, This paper Erosonts
a model for such analysis with specific application to airport 1ighting
systems. A set of consecutive coefficients is introduced to account for
system failure criteria which includes random 1ight outages, consecutive
118ht outages, and consecutive 1ight bar faflures. Probability theory
and simulation techniques are used along with the consecutive coefficients
in dttorm1n1ng system reliabi1ity. The computerized model has been used
in a sensitivity analysis to determine the effect on system reliability
of parametars such as unit reliability, system configuration, maintenance
strategy, and unit performance characteristics.

1. ;u;gggugzégu. Visual guidance 1ighting systems for airports provide
necessary information for aircraft operat?on during the approach, landing,

takeoff, and ground movement (tax11ngz. In darknass, inclement weather or
other pariods of low visibility, the information provided by these systems
1s critical to safe and efficient air traval,

Although significant research has been devoted to 1mgrovtng comgoncnt
equipment in these 11ghting systems and to delineating the pilot's infor-
mation requirements, little has been done to determine the operational
reliability of the systems currently in use., Because these systems are
critical to safe and efficient aircraft operations and because installation
and maintenance costs for such s*stams are high, procedures to analyze the
reliability of present airfield 1ighting systems are needed.

The purpose of the rasearch summarized in this paper was to develop
progoduros for evaluating the functional raliabiiity of atrfield 1ighting
systems,

2, AIRFIELD %IGﬂ;;uG %YSTEM MODEL. There are numerous types of
1ighting systems TnvoTved 1n the visual guidance of aircraft traffic. The
number end the configuration of lights in each system will depend on factors

gsuch as tha information convogancc requirements, the area to be served, the
category of operations, and the terrain,
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A1though individual systems are comprised of specialized equipment in

- configurations designed to satisfy specific information requirements, all
Tight ng systams have the common elements of a Rower‘sourcc. power circuitry

- 1ight transmission equipment. Because of these similarities, & general
model can be used to define all visual puidance 11ghting systems.

The model developed for this purpose consists of 12 types of components:
commercial eowar. aux11lary power, control panel, control circuitry, control
vault, regulator, primary cable, isolat1ng transformer, sacondary cable,
fixture, lens, and lamg. Division of the model into these components cons-
sidered function, maintenance, physical proximity and connection, and failure
modes. Some of the components include several elements ga. .» the control
vault includes power transformers, relays, switches, etc) while others are
composed of a single element (e.g., the lamp).

Figure 1 11lustrates the general 11§ht1ng system model. Since the number
of components of each type can be varied (or deleted if not a?p11cab1e). this
mod:1 provides the nacessary flexibility to define all airfield 1ighting
systems,

JUEUURE W e mRE Ret i e

By definin? the geometry of a system, the operating characteristics, and
thg ;u11ur¢ criteria, any lighting system can be analyzed using this genaeral
model,

3, ;ELLQEL&I]}LM@%EL, System re11ab111t{ is typically defined as the
probabi11ty that a system will perform 1ts intended function in a specific
environment for a specified period of time. Howevar, systems which under-
go constant maintenance, as 1s the case with airfield 11ghting, are composed
of equipment of various ages and thus a time period can not be realistically
analyzed. For such maintainud systems, the steady-state reliability, which
can be intarpreted as the probabil1ity of the systam being 1n a nonfailure
state while under operation, ig significant.

Figure 2 15 a tree structure de 1°t1"3 the parameters which must be
considared in analyzing the reliability of airfield 113ht1ng systems in
the steady state. Essentially three steps are required.

a. Develop the component reliability function for each type of
component,

b. Simulate the average light unit relfability.

c. Calculate the systeam reliability by applying the system failure
¢riteria,

Thus, the reliability mode! includes both deterministic and stochasti~
arameters which must be combined by using analytic and simulation procedures.
gnt;011og1?g sections summarize the procedures employed in the three steps

of the model.
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) | 4, _QQ@ﬁ?%E%{TBQLLAQ%LLIXa The reliability of each component type in
i ~ the generul 1g -na system model can be approximated by an exponential
S distribution over the component's design 1ife. This distribution {s defined
‘ﬂ | by Eq 1 and 11lustrated {n Figure 3.
A
. R (t) = o "M [Eq 1]
4
i >
1 f n
' ‘
. o ﬁ‘tjreﬂif
| -

i TIME

| Figure 3. Component Reliability Distribution,

Determination of the failure rate (A) for each component in the

; system 1s guite complex whan maintenance and operation practices are con-

i ; sidered. Full-scale testing of liqhting systams to determine failure rates

0 would ba very expensive and time consuming, while accelerated teatin? of

;' - systems or individusl components introduces inaccuracies. Thus, field data
i on system parformance are tha best source of information for determining

a compunent's rel{ability function,

Considering the f1e1d data anticipated to be available, the reJiab111ty
function for each component in the 11ghting system can be expressed by:

(14,)¢,

R(t.) w0 Cf [Eq 2]

where cf » the coefficient of failure
cm = the coefficient of maintenance

t. v the safaty time (1.e., the period of time whan the component
® {5 known to have no chance of failure).
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c 3The coefficiant of failure (C,) for each component is computed from
q 9 ‘ '

. ttotal { compo , . !
Cey (Jno. of cio“mp'onun‘i]— Li M1ul'r'umperl‘"’yl'eiiurm) 50,000 [Eq 3]

: 4The goefficient of maintenance (cm) for each component 1s computed from
q 4. \

¢, = In(-Cpy In Ry Eq 4
mi mr—_-f-;)-’-z-} EQJ

where tL = design 1ife of component i
t’ = safety time for component i

R‘ = average reliability for component {1,

Ney T
.- (Nf_)(_%)

whure Nf = failures per year for component i

No = total number of component { in the system

Td = average downtime for component | (hours)
T = operation time per year (hours)

Uti11zing these relationships, Eq 2 can then empirically actount for
praventive maintenance, corrective maintenance, and failure rate, Preventive
maintenance (PM) considers the component's design 11fe, replacement time
(1,e., that period preceding the design 1ife when group replacement is under-
tnknnf. and, 1nd1roct1ﬁ. the lavel of PM activities (i.e., the more PM
performed, the lower the failure rate). Corrective maintenance includes the
tima to detect & failure and the time required to ﬁarform repairs. The
fatlure rate 1s the annual number of failures of that component tyge in a
system dus to all failure modes (e.g., wear-out, human error, etc.
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6. uusl Bﬁk*ﬁﬂéh]*ﬁ. Oncr the individual component reliabilities
have been determinad, they can be combined to obtain a unit reliability using
Eq 6. The unit relfability (Ru) 1s defined as the probability that a
randomly ehcsanvginglc unit 1n the system will ba operational when called
uﬁon to perform. The unit {s composad of one of sach component type in
the gensral 1ighting model as depicted in Figura 4.

Rg (gg) * By (t7) * Ry (tg) * Ry (tg) * Ry (tyg) * Ryy (9g) * Ryp (typ)  [Eq 6]

To detarmine the average unit raliability, a Monte Carlo simulation
routine was developad to stochastically account for the time function and
system soomotry factors, That is, the component's reliability is actually
a function of time and, in the steady-state, the component's reliability
may be at any point of time on the function. In addition, the system
geometry, or the numbar of each component in the system, will also influence
the average unit reldfability., The routine used is 11lustrated in Figure 5.
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Ry @ [1-(1-Ry ) 00Rg 49 Ry g

}—-

i ? For each component, i, select §

i ¥ random times (t1 35 such that

3 i 0 < t‘ jet '

£ ; ’ ) 3

- g where £ = replacement time for

; i comgonent i

" E J = number of component i :
o {n the system | )
o g '
I
2 8
T B From the individual component
¥ -~ reliability functions, determine
@“{ . g the component reliability for
w : 8 each t1 4
? g %/ ¢
3 -
")
" ; 5
&f' : ?é Combine component reliabilities
E~ ‘ .E (R1.J) using:

&

L
. i f .
E’\ Ras Ry Reuy R
% o Red Rou R0y Ry
| Ry2,4
l i to grov1do a8 unit system for each
B )
*?? Figure 5. Simplified framowork of
average unit reldability simulation
| routine.
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ILITY. An airfield 1ighting system fails when 1t does

6, SY§

not accurately transm e information required by a pilot for safe opération

of an aircraft. Since pilot parception 1s involved, system failure 1s sub- .
jective in nature. Through research studies, the FAA has established objective
failure criteria which provides minimum operating standards for each type of
11ghting system, . o

In defining failure criteria, the airfield 1ighting systems have been
catagorized as linear and bar systems. The linear system criteria stipulates
the percent of random outages and the number of consecutive outages. The
bar system criteria stipulates the percent of random outages, the number of
gui?ges in a bar creating bar failure, and the number of consecutive bar

ailures. _

Using the appropriate fajlure criteria and the average unit reliability,
the rel{ability of the 11ghting system can be determined from Eq 6 for both
categories of systems.

n
- n-1 1
i=Q

where Ry * the system reliability
the unit reliability

the total number of 1ights in the system

]
»

-t
n

the number of 1{ight failures in the system

the number of ways 1 failures can occur in a system of n
total 11ghts without the system reaching failure by either
the random or the consecutive “ailure criteria,

=
-
|

The fol1ow1n? example 11lustrates the application of this equation.
The example involves finding the system relfability for a three-lamp system
(ne3) with system failure defined as 211 three lamps out or two consecutive
lamps out. The probability of a lamﬁ being on is R,., TabTe 1 shows the
e1ght possible conditions in which this system can ge; three are faflures
and five are successes.
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. The syctem. reldability is

ML ﬂ-" .|
Rg = Wy RS (1-R)
j=0 )
w 10 3-0 ) 3«1 11.p \1 & qp 3-2 2
Rg = 1R, (I-Ru) + 3R, (I-Ru) * R, ('I-Ru)
+ 0r,33 (11 )3

TABLE 1

Possible Conditions for Example

s ) S 8 F S F F § = Success
Lamp 1 0 X 0 0 X X 0 X F = Failure
Lamp 2 0 0 X 0 X 0 X X 0 = Light cperating
Lamp 3 0 6 0 X 0 X X X x = Light failed
=0 1=] 1=2 {23
Wy =1 W, =3 Wy =) W, =0

In a 1inear 1ighting system, if the consecutive failure criterion 1s
not considered, Eq 6 reduces to a binomial distribution or

NR
hy o 0(?) RS (18, [£q 7]

whare NR = number of random faflures allowed in the system.

St L st e o AFEA e o LSS

RS PR




To congider consecutiveness as well as random butages in tha failure criteria,
an anaiitical procedure has been developed to compute each wf. Stnce W

15 multivariate 1nte?er function of n, NC, and 1 (whare NC'= number ot
consecutive failures allowed and n and | as pirévicusly defined), there

18 a unique constant for each (n, NC, 1) which s defined Hare as the
consecutive coefficient, C(n, NC, 1), This coefficient is the numbar of

ways that {1 .oulages can be distributed in n total 11ghts without havin
morg'thaﬁ‘Nc consecutive outages. “Substituting the coefficlent in Eq
produces: S :

NR ne1 i |
Rs = ¥ w, Ru (1-Ru) [Eq 8]
10

(Note that the summation 1s from 1=0 to 1=NR since W, goes to zero when the
number of outages, i. exceeds the allowable random catages. NR) .

An automated procedure 1s used to compute the consecutive coefficients
based on the following recursive function:

c(n, NC, 1) = C(n=1, NC, 1) +
cln-1, NG, 1-1) = ¢{n-NG=2, NC, {NC1) [Eq 9)

The derivation gnd davelopment of the program may be found e1sewhere.]

The method for analyzing the bar 1ighting systems {s similar, However,
the determination of W, is much more complex due to the nature of the bar
system failure criteria. A detailed descr wtiopn of the bar systerm analitical
technique 1s given in the project final report.]

1 | indow, E. S. and Yuo, F. "Reliability Analysis For Alrfield Lighting
Sys;ems" Final Report for Contract DOT-FAGGWAI-118, CERL, September 1976.
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e Igg_ééﬁhg_fggﬁsb + The reliability methodology summarized in the
pravious secitons would be difficult to apply manually when considering the
number of 14ghis in a system, the stochastic pro?erties of the component
reliabilities, and the sophistication of the faflure criteria, Thus, the
procedures have be&n*cemguturfzod in the RAALS (Reliability Analysis of z
Airfiald Lighting System) program, This program is capable of efficiently
estimating the functional reliability of any 1ighting system used in the
vigual guidance of ajrcraft. Flexibility 18 provided in the program to : ;
- considar various system configurations and fatlure criteria as wall as :
different componient failure rates, design Tives, and levels of maintanance.

Figure 6 13 a'simpiified flow chart of the RAALS pro¥ram. Figure 7
presents the input data 1isting, a typical component rel ab111tg function,
and the system reliability outpul resulting from an example problem.

8. .Q?MCLUSIO&§. The antomated procedure for analyzing reliability of
a1r§1:1d ghting “systems (RAALS) 1y an implementable tool which can be
usad to:

a, Compare the reliability of similar systems,

b, Determine where a system should be improved to increase its
reliability,

c¢. Form a basis for decisions on implementing changes to failure
criterie, equipment, or maintenance policies,

d. Moniter the relfability of a system as 1t becomes older or as
-modifications are installed.

The RAALS program logic 1s based on traditional reliability theory.
However, due to the number and complexity of 11?ht1ng systems and the
necessity to consider consecutiveness in the failure criteria, original
analytical techniques were developed and interfaced with traditional
- theory, Thece tecnnigues included:

a, Formulation of a general 1ight1ng system model capable of con-
?:dnz}ng a1l of the diverse equipment and geometry encountered in airfiald
gnting

b. Adaptation of a Monte Carlo simulation routine to the analysis
to account for the stochastic nature of the component relfabilities

c. Derivation of the consecutive coefficient to consider consecutive- E
ness in the system failure criteria
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! : ~d. Development of an anlaytical procedure to determine system
‘ reliabil1ty which accounts for the oparation, maintenance, and failure
variables of each component :

|
‘ . .
( e. Automation of the combined proceduras into a concise, efficient :
| computer program, ' ’
' Although this research effort was devoted to airfield 11ghting s{stami
the methodology developed 1s applicable to any systam which can be s m11ariy
defined and for which failure criteria stipulate consecutive fajilures
as well as random failures,
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SIMPLLFIED METHOD FOR DETERMINING
. APPROXIMATE LOWER CONFIDENGE BOUNDS OF A BYSTEM
WHOSE POSTERIOR RELIABILITY DISTRIBUTION 18 DESCRIBED A8 A BETA

Louis M, lannuzzelli
Product Assurance Directorate
us Army_ArmAmunt Command

and

Robert Dostal
US Army Management Enginesring Training Agency
Rogk lsland, IL 61201

ABST « This paper deals with a simplified merhod of datarmining the
approximate lower confidence bounds on reliabllity of & system, given the
aystem posterior raliability beta paramsterzs A'g and B's (integar or non=

integer) and/or trials and failures observed and the interval desirad, Prior
to the development of this method, a computer was utilirved to determine the
lowar bounds dus to the fact that the beta parameters ware, for the most part,
noti~integear, The mathod desaribed in this paper was ampirically developed and
provides a method of determining approximate reliability bounds very eimply
with the use of a B8R 51, HP 45 ato., hand calqulator. The unsolved problem
simply stated is "Why does the mathod work as well as it does?"

HMT“. A need arcee in ARMCOM for a simplified mathod of
detarmining approximate lower bounds on reliagbility, given eubsystem data,

a model and the confidence interval desired, As a result, a literature search
was made of current available methods. Thase methods are referrad to by comw
parison in our paper titled, "Confidence Limits for System Reliability When
Testing Takes Place at the Component Level,' dtd 31 Oct 75, Based ou the
review of the surrent avallable mechods, it was decilded to see if a more
simplified method vould be daveloped which trould overcome some of the short=
comings of the current methods and still provide results which would satisfy
our needs, A method was developed as dnidcribad in refarence paper; howevary,
the mathematical expression derived empiriaally for calculating the lower
bound is still, to this day, not fully understood.

hmw. The lower bound on reliabllicy 1w
datermined as followst

Given: As. Bg system posterior reliability parameters of a beta
1 = a= Confidence interval desired
£, = 2Bg
£, = 2Ag
65
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2
= Xgyp

‘

| R(y ) = o0 (= — {1 — —)

( ' £ 4 £ = 2= (£y = 2) 831 {1l = ( 1 = 1 3} qQ
LT . T+ HFT

2
= X(1 - u);ra

(1 = q) = exp (
(- a) £ 4 £, -2~ (£ - 2) 830 {1~(C_L _~-_ 1 )}q'
,+1 #+1

whare Q' = ?I—éa?;
Ri-a)® =8y L
3. B SSI0N FOR BINOMI '
Givent N = No., of trials
£ = failuves
1 =a = Confidence interval

£+ 1< (N=2£)

2
= Xyp2(f + 1)

2{N=f£.830 {l=( 1 = 1 )} Q)
2643 2(N=f) +1

R - axp (

1l =a)

where Q = £.1 1
N+ 1

E+12 (N~-£)
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XL - a)y 2N - 1)

[ISSS

Ry 2 q) =% ( - -

2 (N = (N - £) - 1) .83 (L-(___ 1
THN-DH+1L TF¥3

ho U N—.f
whaere Q .NN'FJ.

T T e

&y : -
e Blu—a) ® 2 =Ry o qy |
%ﬂ ? A fractional chi-aquare table is requiredj however, linear interpolation
,ﬁ E can ba utilized.
5"*“ 4, PROBLEM, An understanding of the expression:
b 2 3
4 | " ity y
. . R . exp ( y 1
M (L~ a) £+ 3 = 2~ (f; - 2) 831 {1-C 1 ~__1c0
e 1 % T{" i A
b, s
! whare Q = _-.---—fl b
: f1 + fg }
is needed in order to provide an anwwer to the many inquiries concerning the “
¢ mathematical validity of the sbove axprassion. i
{ 'v ; 3:. RESULIS, Many values of Ag and By, both integer and non-integer, ;
h, wera compared, The values shown are just a few of the comparisons made.
E Othar comparisons at different confldence intervals were nade as shown in
ol Table 1 through 4.
For whataver help it may be, the ralationship bLaetween the F distributlon 1
and the expresslon was found to bes : \1
. ) - ]
| Fobf fa=f2 (Tp g < fy ]
2 L &
: "l
i where p = axp (-K)
: F 3 fli fy = £2 ¢ L =1 )
¢ Tl wxp K %
b
Vi £y, fy = 52 Caxp (R) - 1) |
f1 o
: x:'z'j.‘ -
K = 4 —kit E K
A f1 46y 2= (fF) - 2) 830 {1-(_ L1 _-__3 )a¥ -
E 67 B;
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N

¥
£
i
t

% Ag Bg CONFI_DENCE TRUE OM.CUMTED ERROR
¥ 4,18 8,00 99 + 091 091 0
k 95 144 «1dé 0
E 90 179 179 0
b 102,34 28,44 99 1693 1692 %, 001
L 93 721 721 0
: §0 + 735 +738 Q
¥
! 7'01 5.04 99 0234 |237 --003
._ 95 1314 .315 '0001
; 50 1361 ,361 0
7.49 6,09 99 «231 1284 -,003
95 +332 1333 «, 001
90 +379 v 379 Q
18,71 3,99 99 607 606 +.001
93 +681 679 +,002
90 718 W 717 +, 001
10,08 5,00 9% «358 557 +.002
05 632 +631 +,001
90 870 +668 +, 002
17.84 4,99 95 558 8584 +.001
95 629 1627 +,002
90 667 668 +, 001
;
]
|

TABLE 1




Rilthaits- sl anhetn i bl ab b i S

Ay Bg CONFIDENCE TRUE CALCULATED ERROR
98.23 4,98 99 . 891 . 890 +,001
95 .913 V912 +,001
90 1924 .923 +.,001
94.21 10.99 99 .816 .84 +,002
95 1843 841 +.002
90 .856 . 854 +,002
38.38 75 99 . 901 901 0
95 .937 .937 0
90 .953 .953 0
6.12 71 99 .521 .519 +.002
95 .669 .668 +.001
90 V743 V742 +.001
49,45 .52 99 934 .934 0
95 «961 . 961 0
90 972 .§72 0
647,45 .63 99 +99426 «99432 -, 00006
95 199651 - 99656 ~.00005
90 (99744 +99750 -,00006
122,23 .68 99 96919 +96916 +,00003
95 +98104 +98102 +.00002
90 .98604 +98602 +.00002
49,86 .35 99 \945 . 944 +,001
95 970 .970 0
90 +980 .980 0
TABLE 2
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LOWER BOUNDS OF SINGLE TAIL CONFIDENCE
" INTERVAL (BINOMIAL DATA)

293

199

) : _OFT " CAU, _TRROR__OFY __ CAL, _ ERWOR
3 0 464 464 0 +368 «360 0 +215 «215 0
1l ,196 + 198 -,002 +135 «137 -.002 +059 060 =,001

2 .035  .038 0 .07 017 0 .003  .003 0

6 0 .68l 681 ] +607 607 0 + 464 464 0
1 .490 +492 -,.002 418 421 -,003 - .,294 1298 «,004
2,333 «336 -.003 +271 1875 -,004 2173 178 -.006

3 .201 +202 -,001 »153 +154 -, 001 +085 085 0
4,093 .092 +,001 +063 063 0 027 +027 0

10 0 .794 « 794 0 + 741 o741 0 631 +631 0
1,683 +663 0 . 606 606 0 +496 +496 0

2 0550 551 -,001 -493 0“9“ -.001 .335 0390 -0002

3 448 449 =,001 +393 «395 -,002 «297 +300 ~,003

4 .354 354 0 . 304 «305 -,001 +218 222 ~-,004

5 .287 271 -,004 1222 «226 =-,004 <150 +153 -,003

6 .l88 «189 -.001 +150 151 =-,001 +093 094 -.001

7 .16 +116 0 . 087 .087 0 +048 1048 0

8 .054 +034 0 037 +037 0 +016 016 0

9 0009 0010 -.001 .005 0005 0 .001 .001 0
30 0 .926 926 0 +905 +905 0 858 +858 0
1 .876 +876 0 «851 851 0 +798 798 0

2 832 831 +,001 +803 +804 +.,001 748 747 +.001

3 .9 «789 +.002 + 761 + 760 +,001 «702 701 +.001

4 751 ' 749 +,002 + 720 719 +.001 +660 638 +.002
3,713 711 +,002 +681 679 +,002 619 1617 +,002

6 .675 +673 +,002 +643 + 541 +, 002 .580 578 +.002

7 639 1636 +,003 +606 +604 +.002 +543 W 541 +.002

8 .603 601 +.002 370 +368 +.002 507 «305 +.002

9 568 +366 +,002 2535 +533 +,002 473 W47 +.002

10 334 331 +,003 »501 498 +.003 439 V437 +,002
i1 .500 497 +.003 1467 1465 +.002 + 406 2405 +.001
12 .467 464 +.003 «434 432 +,002 0374 «373 +,001
13 4% 2431 +,003 +402 « 399 +,003 +343 + 342 +.001
16,401 + 398 +,003 +370 +367 +.003 313 «312 +.001
15 .370 «376 -.006 +339 1345 =, 006 284 « 280 -,006
16 ,338 « 344 -.006 + 308 314 «,006 1256 1260 -,004
17,308 o312 =-.004 279 «283 =,004 228 «232 -4 004
18 .27 »281 =-.004 + 250 +253 =, 003 +201 + 204 =-.003
19 ,248 + 230 -,002 .221 224 =,003 176 178 =-.002
20 .218 221 -.003 +193 «196 -,003 151 +133 =,002
21,190 «192 -.002 +163 168 ~.003 127 129 =.002
22,162 + 164 =-,002 140 «142 -.002 +104 +106 -,002
23,135 +136 -,001 »115 .116 =-.001 .083 .084 =-.001

TABLE 3




LOWER LIMITS OF 50X CONFIDENCE INTERVAL
(BINOMLAL DATA)

N__f _OPT,  CAL. _ ERROR N _§ OPT,  CAL, _ ERROR :
1
2 0 +707 «707 -0 20 16 «181 «182 -,001 - !
1 +293 +293 0 17 «131 «132 -,001 !
18 083 .083 0 f
3 0 +794 « 194 0 19 034 034 0 ;
1 +500 +501 -.001 ?
2 «206 +206 0 3 0° 977 +877 0
1 +945 +945 0
6 0 +B891 +891 0 2 +912 51l +, 001
1 +736 2736 0 3 879 +878 +.001
2 379 4378 +,001 4 +846 +845 +,001
3 421 422 -.001 6 +780 + 778 +.002
4 +264 «264 0 8 W 714 W 712 +.002
5 +109 .108 0 10 +648 +645 +,003
12 «582 578 +4 004
1 +B838 +838 0 16 451 455 +. 004
2 741 741 0 18 385 +388 -,003
3 06“5 .644 +o°°l 20 0319 0321 --002
4 1543 1546 +.002 22 |253 0255 -0002
5 452 454 -,002 24 187 «168 -,001
6 +3535 + 336 -,001 26 1121 122 «,001
7 0259 0259 0 27 ooea 0089 '1001
8 162 162 0 28 +035 085 0
9 067 067 0 29 023 »023 0
20 0 +966 +966 0
1 917 917 0
2 869 868 +,001
3 819 +818 +,001
“ 0770 .769 -l°°1
S o721 720 +,001
6 672 670 +.002
7 623 «620 +,003
8 574 S70 +.004
9 323 «320 +,003
10 0“75 .‘030 -0005
1l 426 +430 -, 004
12 377 +380 -.003
13 + 328 «330 -.002
1‘ 0279 |2°° "UOOI
13 »230 '231 -, 001
TABLE 4




EVALUATION OF GUNNER ERRORS THROUGH TIME SERIEE ANALYSIS.
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; Latricha Greene and John Howevton
I Systems Evaluation
; Aercballistics Directorate
i - US Army Missile Resgarch and Davelopment Command
. Redstone Arsenal, Alabama 35809
N : ABSTRACT

This paper describes a procudure used at the Army Missile Cowmand
(primarily with command to line of sight aystems) for modelling man
in the loop., The model devaloped here with its parameters can be usad
to simulate data or to drive & total systems simulation.

The procedure outlined here was developed initially by L. Greene,
J. Howerton, N. Rich, and M. Wise of the Army Missile Command in
conjunction with M. Yang from the University of Florida for the optical
mode of Air Defense Systems in which a man wae used to ftrack the
target, Current plans call for using this same technique to evaluate
tracking radars during an ECM environment.

The analysis of the original work as described here was concerned
only with stationary data.
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1. Introduction

Prediction of the amount of arror due co gunner tracking
of a moving target 1s an important phase in the development of weapon
syatams. Data of this type ogour in the form of time series. The
obgervations are dependent and the nature of this dovendence ls of
utmest importance.

The purpose of this paper is to present a method for evaluating
gunner crror data described below, thereby defining a time series
model, This model and its parameters can be used to simulate data for
future problems of a similar nature or may be used as a subroutine to
missile flight simulation,

2, Data Desariptien

The initial tests to determine the gunner tracking error
characteristius were conducted at Redstone Arsenal during the period
13 through 18 July 1972. The King Air, a twin engine Beechoraft, was
the target utilized for these tests,

A lemm £ilm camera was attached to the monccular cutput of the
tracker unit, This output presents the same view to the film camera
ag the binooular output presents to the gunner.

There were four gunners who participated in the tests, They were
instructed to track the centreld to the target aircraft when detalls
ware not resolvable. When resolvable they were to track the inter-
section at the wing and fuselage. The amount of error was shown to be L
independent of individual gunner, that is, thsre was no statistical '
signiflcance,

3, Model Bullding 5

This seation discusses the time series model building For the :
gunnera' error data, After eoxamining all the data avallable, we conclude "
that the data forms a statlonary time series except at the beginning '
whore a translent occurs, during acquisition, and at the end where a M
tranglent is introdussd by the simulated missalle in flight eignal. j
Runs with too few data were eliminated. The total number of runs was k
then 143, A few nonstatlonary data can also be seen. They ocoupy M
13,79 percent of tne total,

When the data are recorded with equally spaced tilme intervala, wa
penarally use a linear time series model to fit the data., A commonly
nand model for unlvariate time serles can be written as
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Y: LARVEL J ol(Yc_l - u) * Qz(yt.z_ u) * s ."‘ ‘P(Yt‘p n. “)

+'ti91.='1“ sve = 8 (101)

q*teq

wherxe

time
the value of the time series at time t

subsceript ¢

(2
]

the expectad value of Y

h =
]

-
a white noise process, {.e., a, is independent,

tdentically distributed N(O, o%)

two parameters depending on the propertics of a
particular time series.

Py q

Model (l.1) is called a mixed model with autoregressive and moving
average components. Lt has been widely used in practice with fruitful
vesults (see @.g., Box and Jenkins {1}, Fuller and Tsokos [2), Cleveland
{3, 4]}, and Box et., al (3}]). The intuitive idea behind the model (1.1)
is the assumption that the present value Yt depends on the values of

Ye in the near past, i.e., Yt-l' Yt_z. vy Yt-p' This 18 the autore-
gressive component '

¥, - “).' Oy(¥ g = W) e )+ 4 ey = W)

The moving average component B, = 6y8, 4" e eq't-q indlcates that

the present value Yo depends not only on the preaent noise 8 but alsao
the pravious noise 811 2r o “t-q' This Lo reasonable since the noise
will net diminish very rapidly in veal situations. Tha noise prolongs
its influence on Y, for a certain period.

In practice when time serias data ave given, a model of the form
(1.1) can generally be built. The detailod procedure has been given in
Box and Jenkina [1}). There are four main ateps,

8. d cat
In this firat step, autocorrelation coefficients, partial

autocorrelation coefficiaents, and invorae covrrelation cooff{icients
(e.g,, Cloveland [3]) are used to determine the values of p and q in

75

OFeS

TNt

.

oo 5 7 e

e "




model (1.1). The value p is callad the order of the autoregressive
component and the value q is called the order of the moving average
component in a mixed model (1.1).

b, Parameter Bstimation
After the values of p and q have been detarmined, there
are p+ q + 2 Pﬂflmﬁtﬂl’!l Wy ¢1| °2 vey QP. Gl. toay Oq and the
variance °3 of ., to be determined. The method used to estimate o's

and 6'e has been described in Box and Jenkins (Chapter 7, [l)]),
Clevenson (6], and Pareen [7]. The main technique is the maximum
likelihood estimation. Generally, the calculation needs the help of
speotral denslty estimation [7) or nonlinear least squares cstimation

(1),
¢, Dia i¢ Cheaoki

The estimated values [, §. ﬁ. and g: of the pavameters
My $» £y and g:. respectively, are not generally equal to the real value
of these parameters. The model with estimated parameters

(b = Q) = &) (¥ = W+ e # 8 00, = D) 4 51.“.

- loo"6l (1-2)

q teq

may not fit the original data well. Dtagnoeﬁic checking determines
whether our estimated model fits the data well., The residual process
[‘t] is examined, If the [C=J is close to a white noise process, the

model is considered to be adaquate and the whole model building procedure
is over., Otherwise, we go to tha next step,

d. Modification of the Model

1f the model we built is found inadequate through the
diagnostic checking, we will try to £it the data by a new modifiad
modal, Generally, the residual process (ttj will reveal soma information

on how the model should be rebuilt, In most cases, a pair of new values
of and q ywill be obtained. Using these new values of p and q, we
undergo stups b., c., and d. for this new model building.

All the four steps have been carefully followed for building the
gunners' error duta model, F,¢ the (apparently) stationary time series,
with agimuth and elevation both counted, the total number of realizations
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was 248, Each time series of arimuth and elevation is run separately

% (Tablas 1 and 2)., Sixzty-two percent of the stationary series can be
'%? fitted well by a third order autura;rllntvn process [pw» 3, ¢= 0 in
§ model (1.1)], L.e.,

e - | .

E . | (1.3)

A few data can not ba fitted well by (1.3); they arve fitted by a morve
. complicated model, These models and their percentages of the total
i data are given in Table 1. Due to the biological and psychological
3 diffarences among gunners, there are variations in these parameters.
: The means and variances of these paramaters ara also given in Table 1.

TABLE 1., GUNNER'S ERROR MODEL FOR AZIMUTH

General model (3rd order autoregressiva procaess) (62.90%)
u 01 02 03 af

Mean 0.0393 0.4489 0.2362 0.1248 0.0l128

Variance 0.0108 0.0170 0.0066 0.,0087 0,0001
L Special Model
; Mean Variance
ﬁ 1) o, ® 0 (17.74%) 0.1490 0.0050

25 6g # 0 (4.84%) 0.0962 0.0076

3) og # 0 (5.63%) 0.0485 0.0189
4) 6,40 (3.22%) 0.1218 0.0060
; 5) oy * 0 (0.81%) 0.1844 0.0000
6) o9 0 O (a.02%) 0.0196 0.0142
; D) $10 ® 0 (1.61%) . 0.0568 0.0145
{ 8) 6y, 0 (0.81%) 0.0970 0

R T 1 S S S~ TP
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TABLE 2. GUNNER'S ERROR MODEL FOR ELEVATION

ﬁben&rnl m@d;i (3rd dtdcr autﬁfégru;nive prﬁonnns.(éo.&éﬁ)ﬂr )
L b b2 Y% %
Mean -0.,0515 0.3692 0.2165 0.1448 0.0043
Variance 0.0124 0.0188 0.0051 0.0057 0.0001
~ Bpecial Model
Mean Variance
1) 6, » 0 (15.32%) 0.1538 0.0014
2) oy # 0 (8.87%) 0.1258 0:0088
3) o, %0 (7.25%) 0.1125 0.0038
4) 6, 20 (4.84%) 0.1221 0.0087
5) ¢ 20 (0.81%) 0.1497 0
6) 05 ¢ 0 (0.81%) 0.1294 0
7) 410 * 0 (L.81%) 0.1178 0
8) 9,0 (0.81%) 0.0%73 0

A question aripes whether the asimuth error and elevation arror
are dependent on each other during a gunner's aiming. The data show
that we can consider the asimuth error and elevation error to bs twe
independent processes. The following procedure is followad.

A general model describing the relation between two time series is
8 linear transfer function model. Let X, ba the time series of asimuch

and Yc be the time sevies of elevation. A linear transfer function
model can ba writtun as

[

(Yt - Hy) = al(Yt:-l - Hy) *ores %(Yt_m - Hy)

+ 5l(xt_1 - Nx) L S ﬂn(xt-n - Hx> + “t

(1.4)
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where
by = EC¥,) | |
hy * B@L) . j

N, = a noise process )

t
m, n &« the numbera of past values of x and Y on which the present _ M
Y dopenda.l ;

Intutitively, model (1.4) indicates that the present agimuth value Yt

may depend on the previous values of both azimuth and elevation. This
modal has been used in many practical situations and gives good results
(sce ¢.g., Box and Jenkins {1]). Since we have already found a good
modal for Y, in the previous model buildings, we may combine the ¥

model and (1l.4) and have

t L Bl(xt.l - ux) + 00 # 5n(xt-n - Hx) + N: (105)

whete at'in the noise process from the model of Yt' Since a, is a

white noise process, the valuas fB's can be esaily estimated (Box and
Jenkins [1] p. 380).

An attampt has been made vto £it all the corresponding pailrs of
apimuth etror data and elevation error data by model (1.,4). Except for
a few exceptions (1 percent of the total), the B values are very small
(lass than 0 03 for all 51' 52. vy 525)° Hence, wa consider that the

crror in elevation has no significant influence on that in asimuth. A
pimilar model fitting by replacing X by Y and Y by X in (l1.4) has alse
bean run for all pairs of data. An independence velation is also
obtained here. Hence, we conclude that there is no significant
dependence betweon azimuth error and slevation error,

4, Bimulation Procedure

In ovder to asimulate the total pnrtormlnco of a guided missile
system with a man in the loop, we may use the gunner's model described
in the pravious section, Considering the nonrepcatability of man's
roactions, it must be realirad that for any single simulation the error
model will not give the same results as given by man, Howaver, maun's
behavior on the average should agree with that of the error model.
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S8imulation of a gunner's behavior may be performed as follows:

. a) Choose 2 random numbers 7 and 73 in [0, 1].. 21 is used to
conistruct amimuth errvor, if

7,¢ [0, 0.6290], & third order autor.gressive modil will be
’ used,

y,¢ 10,6291, 0.8084), a fourth order autoregressive model with
. 6, # O will be used,

71¢ [0.8065, 0.8548], a £ifth order autoregressive model with
: bg ¥ 0 will be uged,

7yt [0.8549, 0.9113), a sixnth ovder uuhoreureniivc model with
bg o 0 will be used,

7, ¢ (0.9114, 0.9435], a seventh order autoregressive modal
with 0y o 0 will be used,

71€ [0.9438, 0.9516], aneighth order autoregressive model with
bg ¥ 0 will be used,

7€ (0.9517, 0.9758], a ninth order autoregressive model with
o ¥ will be used,

, yli [0.9738, 0.5919], a tenth order autorsgrasaive modai with
yoo %0 " 0 will be usad,

7,¢ [0.9920, 1.00], aneleventh vrder autoregrassive model with
: o1y ® 0 will be used. ‘

Thus, we have chosen a model for ssimuth errer process. 7y Lo
used to comstruct elevation error, if

75¢ [0, 0.6048], a c:ird order autoregrassive model will be
used,

; 7€ [0.6045, 0.7580], a fourth order autoregressive model with

f 0“ ¢ 0 will be used,

7€ {0.7381, 0.8467), a £ifth order sutoregressive model with
65 w 0 will be ugad,

7€ [0.8468, 0.9192], a sixth order sutoregressive model with
‘6 # 0 will be used,

7a¢ [0.9183, 0.9676), a seventh order autoragressive model
with 07 # O will be used,

g0




7 ¢ {0.9677, 0.9757]), an eighth order autoregressive model with
¢a # 0 will be used,

796 [0.9758, 0.9828], a ninth order autoregressive model with
6o ® 0 wlli be usad, -

7 3¢ [0.9839, 0.9919], & tenth order autoregreasive model with
Qlo w O will be used,

796 [0.9920, 1.0), an eleventh oxder autoragressive model with
oy * 0 will be usad,
b) Use normal random numbar generator to generate the required
parameters i, ¢'s, and u:.

e) Using a polynomial root solver, check the roots of XP ‘lxp-l
il op w 0, If any of the roots {s greater thanor equal to 1, discard
this set of ¢'s and sealect another group of parameters.

d) Let xe denote the asimuth error process and Yc denote tha

elevation error process. Then according to the models and parameters
chosen by steps a) and b), we can simulate xt and Y, consecutivaly

by generating normal random derivates L from N(O, of).

o) If the perfect aim of a gunner at time t is (ét‘ Et)' than

out simulated coovdinate of a gunner at time t ia <At + xt. Et * Yh)'
A simulation example:
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6. Sample of Data Plots
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7. Future Use

Although the original work dealt moatly with a stationary
set of data, thére is no reason why this teshnique could not be used
with non-stationary data simply by using the difference equations as
outlined in Time Series Analysis, Forecasting, and Contiol, by Bex:
and Jenkins, -

A study is underway to evaluate the ROLAND Air Defense System
during an ECM environment., Thie la & very oritical arms and one: that
g0 far has not been invastigated with a syetematle quantitative appraach.
The approach offered here would be vallid regardless of the type of
engagemaent (optical or radar), Simply stated: A serles of target
tr&cks are carried out and a time serles model is built of the resulting
radar errors as a function of ECM and other parameters.

The £inal output of this study would be a gomputer program (or
subroutine integrated with the weapon system simulation) that could be
used for predioting end game results as a funotion of different types
of ECM throughout the ROLAND system engagement boundary.

The basic data needed to build the proposed model comes From a
video camera bore-siglited to the track radar. An investigation of
the advantages of putting a missile beacon on the target ls being
conducted at this time.
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A METHOD FOR DETERMINING PAlRWISE
CONTRASTS FROM A FRIEDMAN TWO~WAY LAYOUT
BASED ON A THEQOREM BY MARASCUILO

Jimmia €. Delsach and Bugene ®. Dutoit
United Statas Army Infantry Center
Port Benning, Georgia 31905

1. INTRODUCTION.
The authors wish to express their appreciation to the US Army Research

Office and the Clinical panelists at the Twenty-second conference in the
Design of Experiments for their valuuble comments about this problem.

In recent years there has bean an increased effort to produce more
and more non~parametric statistical tests. These tests have had broad
based applications in education and psychelogical research and to some
extent in military testing and evalnation of new products and training
methods.

The value of such non-parametric tusts is well known. Although it
i» not the purpose of this paper to demonstrate the usefulness of these
tests, it is worthwhile to restate one of the more salient features of
non-paramatric teosts and that is the fact that they do not depend upon
gometimes un.ealistic distribution asaumptions, such as the normality
of error distribution and that in many cases they are more readily com-
prehendad and their test statistice more easily computed by a broadsr
spectrum of statigticlans and researahers.

Friedmen in 1937 introduced a temt which is sometimes referred to
as the two=way analysis of variance by ranks. The method is outlined
in detail in Conover [ref 1, pp 264-274]; the test is conmidered to be
the non-paramatric version of the familiar parametric two~way analysis .
of variance (ANQVA). The parametric ANOVA is the usual way of teiting r
the hypothesie of no treatment differences. For experiments of the ran-
domized block design, and where there is one observation per block, the
Friedman test ls used as a non-rarametric method to test this mame hypo-
thesis,

skl sttt it e

Sh i 1.

The subject of this paper is related to an extension of tha Friedman "y
test to the case of several observations per block, given in Conover
[ref 1, p 273). The example given in the next section will illugtrate
the use of this extension, The data come from unpublished lacture
notes of reference 4.

i S 5 i S

2. EXAMPLE,

RNy

The hypothetical data of Table (1] represent scoree on a reading
test given to seventh grade students following ona, three, or five weekly
20 minute training perlods on an electric talking typewriter programed
to teach reading skills. The study was conducted across four different
schools, drawing from different social strata in the community and
taught by four different sets of teachers in four different clasasroom

environments.

= bt iad (RS S,
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able [1] Eabrel on a Reading Test Following One, Three, or Five w»okly”

0 Minute Training Periods on an Hlectric Talking Typewriter for Four

oifferent Schools.
Sessions per Week
chovl 1l 3 ‘ -
110 82 118
87 84 96
7% 74 104
102 70 126
] 41 93 111
76 76 76
43 9] 9l
74 40 105
IC 56 102 82
50 40 72
64 39 80
6l 62 108
D 67 é8 128
€0 87 101
850 69 126
80 63 103

The data of Table 1 are ranked within each blook, These rankings
appears in Table 2. The sum of ranks Ry are also given.

fable 2 Observations Ranked Within Blooks and the 8um of Hanks.
Sessions par Weak -
chool 1 3 )

10 4 11
6 [ 7
3 2 9
8 1 _13
2 10 12
6 [ é

"3 8.5 8.5
4 1 1

Table continued on following page
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Ry =

_ 10

Ry = B0O.5 Ry = 154.5

The expected value of Ry is given by:

. 16§13L

= 104

blocks (schocle)

bw
k = § treatments (sessions par week)
m = § chservations per cell

The Friedman test statistio is given by

Ty

[ 1

12 X

2
Ry~E(R
kM3 (mmk+1) L-J 4B (Ry) ]

3
14 L [ﬂj-104]2
(4) (3) (16) (13) 4=l

12 [37%423.8%:80.89)
713) (308)

L. [729+582,25+2850,25)
208

3831, 8
208

18.4

(1)

(2)
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The distribution of T4 can be approximated by the chi-square distribution

with k-l degrees of fxeedom.,  For this example R=1lw2 and xigsta) = 5,99,

Thus, we would reject a null hypothesis of no treatment differencas,

3. PROBLEM,

In the preceding section, the rasults of Lhe extension of the Fried-
man test to the vase of mevezal obserxvations indicate that significant
differences between the three treatmants exist at the o @ ,08 level, A
natural question arimes, i.e., which treatments differ significantly

“in & statistioal msenas? No poat~hoo pairwise comparison procedures

are given in Conover for thim extension. Also, Hollander and Wolfe (1973)
do not address this problem. A possible solution lies in extaending

& theorem given by Marascuilo and MocSweanay (1967) which is given in

the next section.

4. THEOREM (MARASCUILO =~ MCSWEENEY). Let Y = a, 0, + 8,8, + . . . +
lkeky where k
inl a; w 0 is a linear contrast of unknown parameters, Con-
o
sider the set of all posmible linear contrasts of the form Y. Let

(o]

be an estimate of Y with estimated variance given by
~ k ~ k k N (3
Var (W) = L a] var (6,) +2 p g a, a;r Cov (8164/) (4)
i= . Led
Than in the limit the probability is l=o that simultaneously for all
linear contrasts of the form Y

far & <uei + R (k1) ar (§)
l=0

L)
V=Ygt (k1
1=Q
The reader will note that this theorem is a chi-aquare analog to the

more familiar Boheffe” theorem.

The proof of this theorem may ba obiained from Marascuilc and MoSweeney
(reference }) upon reguest.

5. APPLICATION OF THR THEORUM. Let Ry be the sum of the ranks as in
section 4. Lot

Yowoa®y o+ a8+, ..+ oafy (8)
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be a linear contrast with estimate

The varianoe of the contzast will be determinad Ewo ways; undminq inda~
pendence between treatment observations [i.e., Cov (g ! 8 o 0] and the

casé where the assumption of independence cannot be justified [l.e., Cov

A ~
a. It Cov (eip ei!) w0

var (y) = a,? var (r,) + a3 var (R,) + . . . ag var (Ry)
- [%mﬂ (m k+1zgx-1)] Zay?
12

Where Var (R1> is given in Conover (p. 273).

Aar (ITJ) - ‘/Eama (o k+1) gk-l)] 2:12 {7)
12 .

b, 1f cov {8y, B0 ¥ O

¢6lr (y) = b (m k+1) (mk = m+l) fa,? (8)
12 4

Now
wl @ Ry = Ry » 77=80.5= =3.5§
al . Rl - Ra - 77‘154-5 = -77.5

A

‘pl = Rz - R' = BD,8=154.8 » =74
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Are the possible pairwise comparisons and their estimated values from
our original example. In ovrdor to test tnese values for significance,
we apply the Marascuilo - McSweeney theorem and compute the critical
differences.

D = VX -a(k-1) Araz (W) (9)

&, If COV (6.1' 811) w 0

CD = V5,99 v277.33
= (2.45) {16.65)

= 40.79

b, If Cov (61, 611) ¥ 0

CD = ¥5.99 V312
= (2.45) (17.66)
= 43.28

Any contrast which has an absolute value greater than CD is a statisti-
cally significant contrast. Thus, at the a = ,05 level of significance,
~ ~

yi; and Y, are significant contrasts. Therefore, in relationship to
our example, it would appear that five sessions per week are necessary
to increase the test scores and improve reading skills. This conclusion
is consistent with the findinas of the mxample source (reference 4).
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ESTIMATE OF RELIABILITY IN THE
STRESS-STRENGTH MODEL

Asit P, Basu
University of Missouri-Columbia

ABSTRACT

Suppose Y 1is the strength of a component which 1s subject to a

stress X. Then the component fails whenever X 2z Y, and there is
no failure when X < Y, In this paper the problem of estimating the
reliability function . %

R=P(X <Y) i

is considered. A Survey of available results is presented and some

new results are considered.

%Research supported by Army Research Office under Grant No, DAA 29-76-
G-0301 and by the Air Force Office of Scientific Research under
Grant No. AFOSR-75-2795B.
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INTRODUCTION

Let X and Y be two random variables with cumulative distri-
bution functions F(x) eid G(y) respectively. Suppose Y 1is the
strength of a component subject to a stress X. Then the component

fails,if at any moment the applied stress (or load) is greater than

its strength or resistance. The stress is a function of the environ-
ment to'which the component is subjected, and its value at any point
of time is considered e random variable, The strength of a component

is measured by the stress required to failure. Strength depends on

. material properties, manufacturing procedures and so on. If the com-
ponents under question are mass produced and their selection in a

given system is assumed to be made at random, then the strength should

also be considered a random varisble, The reliability of a component

during a given period [0,T] is taken to be the probability that its

] : sfrenzth exceeds the stress during the entire interval, that is, the
' reliability function R 4s given by

o R = P(X < Y)

S5 S5 L AN A S A

From practical considerations it is désirab}e to draw inference about
the reliability function. The problem 6f estimating R has been con-
sidered by many using nonparametric, Bayesian and parametric approach.
We shall present a survey of available results and consider some new
results.

The above model was first considered by Birnbaum (1956) and has

since found an increasing number of applications in many different

98
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areas, especially in the structural and aircraft industries.

As an example, consider the following problem discussed by
Lloyd and Lipow (1962). A solid propeliant rocket engineis succer
fully fired provided the chamber pressure (X) generated by ignitinn
stays below the burst pressure (Y) -of the rocket chamber, 1If
X 2Y, the engine blows up and the operation is a failure,

Note the problem of inference about R = P(X « Y) 18 similar to
the problem of estimation of P = P(X 2 Y), the probability of fail-

ure. So one can either talk of R, or of P,

2. Nonparametric approach
Let (xl [} xZ pere .xm) and (Yl' Yz. Tae .Yn) be two 1nd¢p3nd0ﬂt'

samples of measurements oi X and Y respectively. Let

.¢(x1, Yj) - {} if Yj < Xy

otherwise
fhon
U ? g (X Y,
- ¢
il w1 i)

s the well known two sample Mann-Whitnei statistic, that is

U = number of pairs (xi, Yj) such that
Yj < X .

Birnbaum (1856) showed that the Mann-Whitney statistic U could be
used to estimate 1 - R {Probability of failure), and hence R, "

particular
99




$=1-R = Wm (2.1)

was proposed as an estimator of P = Pr .(failure), and it was used
to obtain one sided confidence interval for P for the cases F
known. G unknown (m = =), and both F and G unknown. Birnbaum
and McCarty (1958) considered a nuTerical procedure for computing
the sample sizes needed for the confidence interval based on U/mn,
‘Owen, Craswell and Hanson (1964) showed that the assumption of
continuity required in Birnbaum (1956) was not essential and produced
some tables for use in computing sample sized and ¢confidence intervals
for the Birnbaum-McCarty procedure.
vaindarajulu (1968) also has exp11€1t1y derived one sided and
two sided distribution free confidence bounds for P based on the
ﬁsymptotic norﬁality of = U/mn. This bounds are approximately
one half of the corresﬁonding bounds due to Birnbaum and McCarty
(1958), In particular, Govinderajglu showed that for all F andvG and

large m or n, the solution ¢ of the equations
PPsPec)mpPPafoaay,0cycl
is given by

172 ;1

¢ » (4 V) ¢ (v),

and the solution of the equation

P(| B . Plse) 2y, 0¢cyel
100
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is given by

-1 " '
ca v 2o 0.

Here

0'(X) - /‘}1‘1 ‘J:e'“?zdu ,
and 0'1(') is the inverse function of ¢&(:).

Recently Govindarajulu (1974) has slso considered a sequential dis-
tribution-free procedure for obtaining fixed-width confidence limits
for P. (and hence for R). However, in the absence of additional
numerical computation, it is not known hoy good 18 the performance

of this sequential procedure,

S, Bayesian Approach )
Not much has been done from the Bayesian point of view

Enis and Geisser (1971) investigated Bayesian approaqh for estimating

'R assuming X and ¥ to be independently distributéd and that X and

y are either exponentially distributed or normally distributed,

4., Parametric Approach
In many situations, the distribution of X or (of both X and Y)

will be known, and it is desired to obtain parametric solutions,
Thus, in case of missile flights, the stress may be'expensive to
sample, but the physical characteristics of the missile system, such
as the propulsive force, angle of elevation, changes in atmospheric

condition, and so on may all have known distributions; consequently,

4
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the distribution of stresses may be calculated. In this section, we
shall consider the problem of estimating R (or P) for specific para-
metric distributions, | |

4,1 ugzmgl«gintributionz Owen, Craswell and Hanson (1964) considered
abovo'problem and gave one sided confidence intervals for R when
both stress and strength are (a) jointly bivariate normally distribut.
ed and observations are in pairs, o6r (b) when X and Y are indepen-
dent normal with &« common unknown variance. Notelif Xand Y follow
a joint bivariate distribution

R=PX<Y) = P(Y«X>0)

.o ety ¥x .
'(a: - 2 poxay * ayz}k ,

B e (T . T (2. 2%
fnd Reot¥-%/ (ox = 2 poy t o)) }
it ax;'cy and p are known. Similarly if X and ¥ are independent
P(X <Y) = /7 F(x) dG(x).
s

Same problems have been considered by Govidarajulu (1976), who obtain-
od two sided confidence intervals for R. Church and Harris (1970)
'have also considered the same problems under the assumption that. x'
and Y are indipendent. normally distributed and the distribution of
X 1s known., Assume, without any loss of_génerality, that E(X)=0
and Var(X)=1, In this case, '

R = P{X < Y} ; o(_;l__)

Hso?
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where u = B(Y) and ot = B(Y - h)z. . Church and Harris considercd

considered the estimator ' :

Rw O(ﬁ) = & (V), S‘Yp‘ : .

S e n |
wvhere Y » % 1£1Y1 and 2w x (Yi - 7)3/(n - 1), from which they

obtained the following confidence 1nterv11 for R
l:‘ i _‘1 ] . . ‘) o
| Ploqv - ¢t - o) cR<e (Ve eTia - B 8,0 el

§imilarly, a one sided comfidence interval is given by

PR>0 (V- 011 ~v) §))eley,

;;‘3 % Here

AR

E 32 §ls2 "
; V |1+ 2(n - 1)(1 + 8%

The confidence interval obtained by Church and Harris compare

b favorsbly with that of Govindarajulu (1968), Their procedure, 8al-

‘% though empiricnlly demonstrated to be superior to that of Govindarajulu
1@ is, however, 1n|xact since it uses the asymptotic normal_approximaf

tion of & given statistic and requires the substitution of the popu-

lation mean and standard deviations by their observed sample values,

In fact, all the parametric estimators suffer from same weakness as




they are based on maximum likelihood estimators, Mazumdar (1970),
) has considered the same problem of oBtaining point qnd interval
estimates of reliability and obtained mvue of rellability using
interferehce theory., Minimum variance unbiased estimator of R in

the normal case has also been considered by Downton (1973).

4.2 Gamna and Exponential distribution: .Since in many physical
situations, spe;ially in reliability and life testing problems, ex-

ponential and gamma distributions provide more realistic models,
it is desirable to obtain estimators of R in these cases,

. Let X and Y be independently distributed with density func-
tions |

£f(x) = 1 a'x/“ xp'l ' x>0, p>0
- T (p)aP ' ’

Bly) = nq):q VB Yl vy s0, 950

respectively, Then

R = Pxer) = /% [1-6(x)] &F(x)

- f- ’n 1 .')’/3 yq"ldy _l_ .'X/u. xp-ldx
0 |x req)e® o P

(a+p)P*

) " xe0- r(p)ruvl)-"__ﬂ__k
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Here p and q are assumed to be known integers, If two independont
random samples cxl.x ,...Xm) and (Yi,Yz....Yn)from the two gamma

and

e~ 1o

populations are available mle of o and 8 are given by a=
3-%- Hence mle of R is |

«1 . akap
f a0y LRk)  3°E :
kw0 [ (PP (k1) (A+8IP K

As special cases, if qml, that is if X follows the gamma distri-

bution and Y £follows the exponential distribution
}

R« {B7 e+ 8P

Finally, if both p and q are"equal to 1, we have the case of two

independent exponential distributions and we have

R-;_..E- I.—l_ ‘
a+B X+¥ '

.The distribution of R, for large ﬁ and n, can be.shawn to be
normal and hence asymptotic confidence interval for ﬁ can be ob-’ pf
tained, | ' ' ' | |

'Tong (1974, 1975) hus obtained mvube of R for gamms and ox-

ponential distributions. The variance of the muvbe of R, in the i ;
exponential case has been derived by Kelley et al (1876)

4.3 'Weibull distribution: Let X and Y be independent random

variables each following the Weibull distribution with common shape
105
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parameter 6. That is let

R .
F(x)-l-e'?‘/a y, 6 >0, x>0

8
c(y)-l-e'V/B o, B>0,y> 0,

We can readily see

RepXl <¥%) wpPpXey) - B
' o +B

Note above is independent of 4. Again,.we can obtain the mle
of R to be

R= 8/(8 +.8)

where &‘'and B are mle of a and B,

4.4 Bivariate exponential distribution: Since exponential distri-
bution is considered a useful model in 1ife testing problems, it is

desirable to consider bivariate analogue of univariate exponential

‘distributions which will have properties similar to the univariate

exponential distribution. Marshall and Olkin (1967) have proposed
a very important bivariate exponential distribution (BVE), which
is given by

Flx,y)=P 00X, Yoy)me 21X~ A2V A  Z18X (%,Y) 082y 1A 271 11 AHA{ 20, A4t 20 (350, y50)
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The BVE does arise in several natural ways and its properties ap-
pear to be fundamental, In particular, marginal distributions of

BVE are exponential and BVE has the loss of memory pioparty (LMP)

given by
Fixet,yst) = F(x,7)F(t,t) for 8y 87, t20

However, thls distribution is not absolutely continuous and there
are ciearly #ituations when it can not be app}ied. Thus, from data,
it is found that X¢Y for any palr (X,Y) the model is clearly

not applicable, An alternatiée absolutely continuous distribution
related to the BVE and havlng'some of its properties would appear

to be of interest. To this end, Block and Basu (1974) have pronosed
an absolutely continuous bivariate exponential extension (ACBVE),
which turns out to be the absblutely continuous part of the BVE of
Marshall and Olkin, ACBVE is nlso seen to be a variant of the -
distribution Freund (1961)., The ACBVE is given by

A
"1”‘2

Fix,y) = exp[=AyX-Agy-A; ,mex (x,¥))

A
- 12 exp[-Amax(x,y)] for x>0,y»0.
A*Ag

Here

S A T
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Bstimates of R when the underlyiﬁg distribution is BVB or
ACBVB has been obtained by Basu (1976) These results will' be conm-

municated elsewhere.

5. Raliabiiity of complex'systems

- The model described before can be extended to more complex sys-
tems. For example, a single component syitem of strength Y could
be subjected to k different independent stresses »xl.xz....xk.
Hore reliabillty of the system is given by

R ~ p{XII‘Y. X2<Y. LI ] ’xth}
oy
R = P{m‘x(xl.XZ. toe .xk) < Y}-

An example of interest 1s the case where a beam with strength Y s
.subjected to several stresses xl.xz. von o Xy Another similar pro-
blem of interest is to evaluate the reliability function R' of a
k-component system of strengths Yl.Yz, «vo y Yy respectively

each of which is subject to & common stress X. Here

R '_P(X<Y1. x‘Yzj LI ] |Ix<Yk}

e P{Xemin (Yy) 200 Y} .

As an example, the flow of a current X through an clectronic com-
bonent assembled from several subcomponents with abilities to sccom-

modate currents XI.YZ. Ve ’Yk would follow this pattern.

108
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Chandra (1975) has considered the problem of estimating R and
R' under the assumption that the X's and Y's are all independent
random variables and (a) all follow normal distributions, (b) Y's

are all exponential and X is normal with known variance,

.
AT T e

Bhattacharyya and Johnson (1974) considered the problem of
estimating reliability function R for a more complex m-cut-of-k

1Mo A eI, B

system, Here each of m components of & system of strengths Yl'

Yos vos .Yk is subjected to a stress X and the system survives if

at least m out of the k components survive, - Assuming X,Y;, ... ,Y
to be independent with distribution functions F(x), GI(Vi]. Gécyz).
‘o .Gk(yk). Bhattacharyya and Johnson considered the problem of
estimating the reliability function R-Pr(at least m of the Yir ven
Yk exceed X), under the assumption Gl'Gz""Gk'G' say and that PR
and G are exponential distributions with known scale parameters.

Here

K . o .
Re I (ﬁ) /™ 11-G(x)][6(x)1¥ % (R (x))
a=m .=

Bhattacharyya and Johnson (1973) have also considered a nonparametric
approach for the above problem.
The author is currently Investigating additional problems in g

this area results of which wiil be communicated elsewhers,

- e 5
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UNDERLYING PROBABILITY DISTRIBUTION
OF GUN TUBE FATIGUE LIFE

Ronald L. Racicot
Applied Mathematics and Mechanics Division
Benet Weapons Laboratory
Watervliet Arsenal
Watervliiet, New York

ABSTRACT. The fracture mechanics studies of gun tube fatigue
conducted thus far are essentially deterministic. That is, crack
growth and failure are described exactly by assuming that all pertinent
parameters are known. Much information has been gained by this
approach in studying the important parameters that affect fatigue 1ife.
Fatigue life, however, is known to be a random variable. The proba-
bilistic nature of fatigue 1ife must, therefore, be taken into account
in the development of gun tubes.

The development approach used at the present time is to schedule ,
gun barrel replacement early enough to forestall failure during firing. 3
Since fatigue life is a random variable, this is accomplished by 3
statistically determining a '"safe 1ife" from fatigue test results on a
small numher of tubes.

In this paper, a probabilistic approach starting with existing
theories of fracture mechanics is used to determine the best fit theo-
retical distribution of life. The main purpose is to improve the
present statistical methods for determing safe life by providing a
basis for choosing a distribution in analyzing small sample date. The
approach used is to assume that the material properties and design
parameters in crack growth and failure laws are random variables.

Fatigue life is then given as a function of a number of random variables.
The fatigue test results for the 105mm M137A1 and 175mm M113El tubes

are used as bases to estimate means and variances of the model para-
meters. Monte Carol simulation studies are then conducted by assuming
viarious probability distributions for the model parameters and computing !
the statistics of the distribution of fatigue lives. Results of the
Monte Carlo studies indicate that the best-fit theoretical distributions
of fatigue life are the 2- and 3-parameter log-normal.

“1‘
i
]
b
!
H
k]

2 s

1., INTRODUCTION. The general problem considered is the fatigue i
failure of gun tubes resulting from repetitive firing pressure cycles.
Numerous studies have been performed at the Watervliiet Arsenal and
elsewhare on fatigue crack growth and failure of gun tubes [1-12].
These studies include both theoretical fracture mechanics which relate
material properties and design parameters to crack growth and exper- k
imental measurement on actual gun tubes of crack depth versus number of
cycles.,
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The fracture mechanics studies conducted thus far are essentially
deterministic. That is, crack growth and failure are described exactly
by assuming that all pertinent parameters are known. Empirical methods
are used to estimate some of the model parameters, Much information
has been gained by this approach in studying the important paramoters
that uffect fatigue 1ife [10-12]. Fatigue life, however, is known to
be a random variable. The probabilistic nature of fatigue life must,
therefore, be taken into account in the development of gun tubes.

The development approach used at the present time is to schedule
gun barrel replacement early enough to forestall failure during firing.
Since fatigue life is a random variable, this is accomplished by
statistically determining a ''safe life'" from fatigue test results on a
small number of tubes [4-6,13,14]., The safe life is a statistical
tolerance limit [15] for fatigue 1ife for which current specifications
require at least a 0.999 probability that tubes will survive the
specified safe life. This is determined by first assuming a theoretical
distribution of fatigue 1ife and then statistically computing the 0,599
tolerance limit at 90% confidence from a six tube test. The main draw-
back of this approach 1s the lack of justification for choosing the
theoretical distribution. In the past the 3-parameter Weibull has been
arbitrarily assumed [4-6,13].

In this paper, a probabilistic approach starting with existing
theories of fracture mechanics is used to determine the best fit theo-
retical distribution of life. The main purpose is to improve the
present statistical methods for determing safe life by providing a
basis for choosing a distribution in analyzing small sample data.

The approach used here is to assume that the material properties
and design parameters in crack growth and failure laws are random
variables. Fatigue l1ife is then given as a function of a number of
random variables, The fatigue test results for the 105mm M137Al and
175mm M113E1l tubes (4,5] are used as bases to estimate means and
variances of the model parameters., Monte Cario simulation studies are
then conducted by eassuming various probability distributions for the
model parameters and computing the statistics of the distribution of
fatigue lives [16, p. 124].

2. PROBABILISTIC MODEL BASED ON FRACTURE MECHANICS. There are
essentially three phases In the fatigue faliure of gun tubes: 1) initi-
ation of cracks; 2) stable crack growth; and 3) failure through unstable
crack growth or perforation of the tube surface. Initiation of cracks
occurs very early in the life of a tube due primarily to the heat
effects of firing the first few rounds [5,10]. The main phenomena in
tube fatigue, therefore, are crack growth and failure,

112

i T s e 5 i

[ERREPRC RS

M p

At




The theories of fracture mechanics for fatigue of tubes are well
covered in the literature and Army reports; sc only the final results
are summarized here (see [11] and references listed in this paper).
The ¢rack growth model used in this study is based on the Paris [17]
expression for rate of c¢rack growth and on analvses and experimental
results of Throop [12], Throop and Miller [11], and others [1-10].

The rate of crack growth is approximated by the expression

b, Q07 ()
dN M

crack depth

number of cycles

4K = range of variation of stress intensity factor K
for one cycle (see [18] for discussion of stress
intensity factor)

m = empirical parameter dependent cn material and
stress intensity

M = empirical parameter dependent on material

properties.

in which b
N

In the Throop model [12], a value of m equal to 3.0 gives an
adequate overall fit to tube fatigue data although m is known to vary
from specimen-to-specimen and for different tube designs., The vari-
ables AK and M in this model are given as

AK = aSYTH (2)
M= EK CU /C (3)
in which §

muximum hoop stress at the bore of the tube,
« P(w?+1)/(w3-1); P = internal pressure, w =
0.D./1.D.

o = empirical parameter which depends on crack shape
aend residual stresses. Compressive residual
stressus at the bore of the tube are introduced
using the autofrettage process [19,20].

E = Young's modulus

Kic = fracture toughness for a crack in a tangential
stress £ield, is the value of stress intensity
K at which unstagie crack growth begins,
Oy = yleld strength
E = empirical parameter which varies with m to maintain
dimensional homogeneity and may be a function cf
other material propertios.




.t g

Substituting (2) and (3) into (1) gives

g-b— - c W mn
N B, Kpe (4S/75) @

In fha,probébiiity model, the exponent m is allowed to be a random
variable with the mean being determined empirically. The variables
g, ay, Kico and 8 are random variables.

© All of the parameters in (4) can statistically vary from cycle-
to-cycle, as a function of crack depth and for different cracks within
a glven tube, Depth measurements of the largest crack versus number
of cycles as well ms results of probabllistic studles indicate, however,
that the greatest sources of fatigue life variability stem from tube-to-
tube variability in the controlling crack growth parameters, Fatigue
crack growth in a given tube, therefore, is essentially deterministic
in comparisen to tube-to-tube variability. The problem then reduces
to integrating (4) assuming that materisl and tube parameters remain
constant within a given tube:

260, Ky -L(n-2) b-%-(m-z)]

ClasMM(m-2) |
for m ¢ 2 (5)

- BoyKie 1n(b/by)
c(as) &

Nf - N'Ni =

form = 2

in which b; = initial crack depth which depends on the heat
affected zone and residual stresses.
Nj = initial number of cycles yielding by.

In (5), Ny is relatively small and can be assumed zero. The initial
crack depth by is assumed to be a random variable,

Fallure occurs when the crack depth b is either equal to the tube
wall thickness B or equal to the critical depth at which unstable growth
begins. Unstable crack growth in tubes occurs when

b = = (=) (6)

in which by = critical crack depth
A = empirical constant which accounts for differences
in crack shape in the tube and in the specimens
used to determine Kyc.

Finally, fatigue life Np is equal to (N-Ny) in (5) where b = min
(B,be).
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3. LEVELS OF VARIABILITY OF MATERIAL PROPERTIES AND DESIGN
PARAMETERS. Equation (5) 1s a model of fatigue life glven as a
function of random material and design parameters. The theoretical
forns of the distributions of the different model parameters are
unknown., The normal, lognormal and Weibull distributions [21] were

- consequently assumed for the model parameters in studying the form
of the distribution of Ng. For these distributions, the mean and

variance of each parameter are sufficient to fully characterize the
random variabl.s.

Available test data for the 105mm M137Al and 175mm M113El tubes
were used as bases to estimate means and variances of the model para-
meters. Once the model parameters are characterized in a probabilistic
sense, sensitivity studies can be performed to determine important B
factors that influence the statistics of Ng. y

8, 105mm M137A1 Tube Data. Table I lists fatigue life and

property data for nine 105mm tubes [4]. The fracture toughness was .
not measured for these tubes and had to be estimated from the yleld k
strength and critical crack depth datea using (6) and an empirical h

relationship for oy versus Kic [22]. In addition to this data,

crack depth versus number of cycles data were measured on these tubes,
The model parameters m, o, and by were estimated from this data by
fitting the model (5) to the data. Figure 1 shows a comparison of the
model to the data for some of the tubes.

TABLE I: FATIGUE AND PROPERTY DATA FOR 10SMM

nm g
Tube Fatigue Life, bes Iy, Kies (2) -
No. Rounds + Cycles in ksi ksivin a %
59421 16798 0.80 196 90 177 !
59071 12576 0.80 190 99 .851 ]
58046 12469 1.07 171 116 864 i
59906 12162 0.60 189 85 .841 1
62103 10971 n.85 192 107 .891 ¥
59895 10801 0.80 187 104 892 ]
59527 10397 1.05 204 121 910 ;
59239 9503 0.70 187 100 921
59531 8882 0,75 207 106 944

(1) Estimates using equation (6) and o, = 334 - 1.39Kge [22].
(2) Estimates from crack depth vs, cyc¥es data,
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Table Il is a summary of the means and standard deviations of the

model parameters either estimated from the 105mm tube data or assumed
if no data was available,
TABLE II:  SUMMARY OF STANDARD DEVIATIONS
OF MODEL PA FOR 106MM TUBES
Standard
Parameter - Mean Deviation(l)
Dy, Inside diam., in 4,21 0.0 A
P, Max. Pressure, ksi 42 0.0 A
&, Crack shape-residual stress 2
parameter 0.877 0.050 E E
Kyc, Fracture toughness, ksiv/In 103 11,5 B 2
Oy, Yield strength, ksi 191 oy = 334 - 1.38K1c H
bg, Initlal crack depth, in 0.02 0.001 A [
m, Rate exponent 3.5 0.1 A
3 B, Young's Modulus, ksi 30,000 300 A
i A, Critical crack depth constant 1,604 0.0 A
C, Empirical constant 0.0333 0.0 A

P AR

(1) E = Estimated; A £ Assumed

b, 175mm ML13El Tube Data, Table Il summarizes the fatigue and
. property data either measured or estimated from tests on four 175mm
- tubes [5]. Figure 2 is a comparison of the model to the crack depth
4 versus cycles data for these tubes. The means and standard deviations

estimated from data or assumed for the model parameters are summarized
in Table IV,

TABLE IIT: PATIGUE AND PROPERTY DATA FOR 175MM M113E1 TUBES
(1)

Tube Fatigue Life b } Kg» K1c @

; No. Rounds + Cycles  in Kii kn?»’?.'ﬁ ksivin o

: 4134 10974 >3.98 186 130 182 900

¥ 4133 12313 2,40 169 113 118 874 >

! 4127 15255 2 3.08 181 124 139 8189 >

; 4130 16201 > 3.98 153 135 136 808 b

i .
. ‘i (1) Kic was adjusted to account for bg = 2,40 for tube 4133 by i

applying equation (6). Kq is an estimate of Kip using a
nonstandard specimen.

E (2) Estimates from crack depth versus cycles data, '
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TABLE IV: SUMMARY OF MEANS AND STANDARD DEVIATIONS OF
MODEL PARAMETERS FOR_175MM_TUBES

Parameter,
(3ee Table II Standerd
for Definitions) Mean Deviation(l)
Dy 15.0 0.0 A
Dy 7,04 0.0 A
P 4¢ 0.0(2) A
o 8495 0.045 B
oy (3) 146 oy = 334 - 1,38K
by 0.06 ooos A ¢
m 3.0 0.1 A
E 30000 300 A
A 2,26 0.0 A
C 0,2413 0.0 A

(1) E = Bstimated; A & Assumed
(2) Tube-to-tube variation assumed zera; however,
cycle-to-cycle standard deviation a 0.50 from

[23].
(3) oy was computed from the equation given. This x
resulted in a somewhat lower value than the measured %

values given in Table IIl., The computed o, is still
within the required specifications of 140-160 ksi,

4, BEST FIT PROBABILITY DISTRIBUTION OF FATIGCUE LIVES., In this
section, the model expressed by equation [5) 1s used to generate prob-
ability distributional information for fatigue lives of tubes. This
is accomplished by first assuming probability distributions for the
model parameters and then using Monte Carlo simulation to generate
thoffatiguo life Jdistribution. The simulation trials were conducted
as follows:

a. The general form of the distribution for the model parameters
is fixed. A choice of one of three possible distributions is used;
normal, lognormal or Weibull,

e e

b, The mean and standard deviation for each parameter is fixed
using the test results and assumptions given in Section 3 as bases.
It should be noted that the 105mm and 175mm tube data are used only
to provide a starting point for conducting the Monte Carlo trlals,

¢. A value for each of the random model parameters is generated ]
using random numbers [16, p. 124},

d. The fatigue life for the pgiven sot of parameters is computed
using (5) and (6).
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e. Steps c¢) and d) are repeated J times (usually 1,000 to 10,000)
yielding J different values of fatigue fallure times.

£. Various distributional statistics are computed from the J
failure times; #g. mean, variance, coefflicients of skewness and
kurtosis [16, p. 146], 99.0 and §9.9 lower percentiles, and the K-S
(Kolmogorov-Smirnov) statistic [16, p. 466),

Steps a) through f) can be repeated for different model parameter
distributions, different values of parameter means and standard
deviations, different failure criteria, ete.

A number of candidate theoretical distributions were considered
for fatigue life; normal, 2- and 3-parameter lognormal, 2- and 3-para=-
meter Welbull and gamma [16,21]. A comparison was made of the various
theoretical distributions to the Monte Carlo model distribution. This
was done by first fitting the theoretical distribution to the model
distribution by equating means and variances. The third parameter in
the 3-parameter distributlions were fixed by equating the 959.9 lower
percentile of the theoretical and model distributions. The reason for

- this was to match as closely as possible the lower tails of the

distributions for comparative purposes., Goodness of fit was then
¢hecked using the K-8 statistic and by comparing the coefficients

of skewness and kurtosis (third and fourth moments) and the 99.0 and
£9.9 lower percentiles.

The K-S statistic is a measure of the maximum deviation of a
theoretical cumulative distribution from a set of data; the lower the
K-8 statistic, the better the fit. The data in this case are the Monte
Carlo failure times, Table V l1ists the K-8 statistics for the various
:heor;tictl distributions as a function of parameter distribution and

ata hases,

TABLE V: K-S STATISTIC FOR COMPARING MODEL WITH
T VARTOUS THEDRETICAL DISTRIBUTIONS

K-S Statistiet

R wl O

105mm M137A1 Tubes 175mm ML13El Tubes

Failure Time Parameter Distribution Parameter Distribution
Distribution Normal Lognormal Weibul® Normal Lognormal Weibull
Normal 068 061 120 050 040 109
3-p Weibull ,081 .073 299 143 38 . 330
2-p Lognormal ,029 . 022 078 018 010 073
3-p Lognormal ,021 .023 046 014 010 036
Gamma 041 034 , 090 029 019 ,085

*Only 1,000 Montv Carlo trials were used in this case to reduce excessive

computer time,
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It should be noted that the distributions of the material and design
parameters in equation (5) are not known. Different distributions
were consequently assumed to indicate the importance of this factor,
if any, on conclusions made about the failure time distribution. - The
K-S statistics given in Table V indicate that the 2+ and 3-pafamuter
lognormal provide the best overall fit to the model for the different
parameter Jistributions considered, o

An explanation is required for why the K-5 statistic in Table V
increased in some cases for the 3-parameter distribution in comparison
to the 2-parameter distribution, Generally, one would expect a better
fit when the number of distribution parameters is increased. This
would be true if the 3rd purameter was chosen to minimize the K-§
statistic., However, in the gun fatigue problem the main concern is
estimating probabilities at the lower tails of the distributions,

The third distribution parumeter was consequently chosen by equating

@ given lower percentile, This resulted in a worse fit at the upper
tail for some of the cases considered, particularly for the 3J-parameter
Weibull distribution, resulting in a higher K-5 statistic.

In light of the above discussion, it is of interest to compare other
goodness-of-fit statistics which would indicate behavior at the lower
tails., Table VI lista the coefficlents of skewness and kurtosis and
the 99,0 and 99.9 lower percentiles for the model and theoretical
distributions. The parameter distributions were assumed normal for
these particular results with 10,000 Monte Curlo trials run for each
case., Again, the lognormal, particularly the 3-parameter lognormal,
ylelded the best overall fit to the model statistics, Compare, for
example, the 99,0 percentiles of the assumed failure time distributions
to the model value,

TABLE VI: COMPARISON OF SIMULATED MODEL DISTRIBUTION
T WITH TMEORNTICAL DISTRIBUTIONS

o

Coefficients of Lower Percentilo
Fallure Skewness Kurtosis 99.0 g9, o
Time 105mm 178mm  1o5mm  175mm  10Bmm  175mm  105mm  L75mm
Dist, Tubes Tubes Tubes Tubes Tubes Tubes Tubes Tubes
Normal 0.0 0.0 3.00 3,00 558 7801 3598 5977

Z-p Weibull -0,27 -0.41 2,90 3.11 5171 7181 3208 5007
3ap Weibull 0.47 0,26 2,87 2,78 6688 8707 6050 7954
2-p Lognormal 0.68 0,55 3.84 3.88 6802 8857 5745 7712
3-p Lognormal 0,81 0,65 4,18 3,75 6992 0003 6050 7954
Gamma 0.45 0.37 3,30 3,20 6456 8871 5218 7256
Model 0.86 0,76 4.45 3.7 6996 9154 6050 7954

*The third parameter for the 3-p distributions was chosen such that the
99,8 percentile was equal to the model rosults.

121

i e R e o

hm i

S

rewing em e

kel g i,




There is theoretical justification for why the lognormal could be
expected to provide a representation of the fatigue life distribution.
The model (5) gives fatigue life as a product of random variables, The
limiting diatribution for the product of an infinite number of random
variables is the lognormal regardless of the Fform of the distribution
of the individual random variables [16, p. 262]. In practice the
actual number of random variables required to give a lognormal depends
on & number of factors including the form of the distribution of the
individual random variables as well as accuracy required for the
distribution which is to represent the product. For example, if each
random variable in the product is itself lognormal then the product
is always lognormul regardless of the number of random variables, It
appears that even though equation (5) represents the product of at
most seven random variables, this is apparently enough to give a trend
toward lognormal as indicated by the results,

5. FUTURE RESEARCH EFPORTS. The results reported in this paper
were bused on the particular Fracturs mechanics model given by equation
(5), As additional experimental results are obtained this model may
be revised as well as the values of the model parameters and their
Xarianeos. The effect on life distribution must be rechecked in this
nstance,

In any case, a number of interesting studies may be pursued using
the developed probabilistic model:

&, determine the relative effects of varimbility in design and
material parameters on the variability of fatigue life;

b, study possible methods of increasing safe life through control
of statistical parameters;

¢c. study different methods of computing safe life; and

d. improve the initial design approach for new gun tubes,
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ESTIMATION AND EFFECT OF NOISE CORRELATION
ON VARIANCE ESTIMATION FROM MOVING ARC SMOQTHING

Paul H. Thrasher
Quality Assurance Offics
US Army White Sands Missile Range
White Sands Missile Range, New Mexico

ABSTRACT, Correlation in the noise on Y, in measuremants of Y versus X
with X assumed exact, deues not formally effect the moving arc least-squares
estimate of Y. 'It does, howaver, effect the variance estimate of Y. Analysis
hag been dona to find correation factors to the zero correlation estimates of
() tlim moving arc smoothing factor and (2) the degrees of freedom in the
relation

2 [Smoothing Span Factor]
[Variance Estinete] * [30YgooniYnara)') “Thegress o7 Froedon] —

Both correction factors depend on the correlation matrix, An algerithm has
been devised to estimate the correlation matrdix by assuming First Order Markov
correlation. Problems with the application of the theory are discussed and
possible modifications are suggested.

'1, INTRODUCTION. In many physical measurements of related quantities X
and Y, two conditions exist. First, the independent variable X can be measured
80 much more accurately than the dependent variable Y that X can be assumed
exact, Second, the man and/or machine system which measures Y introduces
correlated noise. In one example, the tracking of missiles, X is time and Y
is position.

'The statistical analysis may be complicated by a lack of knowledge about
the physical model describing the data, One approach to this dilemna is to do
a least-squares fit of a polynomial to a smoothing span of N data points in
order to find a "smoothed" value for the middle point i, To analyze the (i+l)th
point, the smoothing span must be shifted one point forward in X and the least-
equares analysis st be repeated., In the example of missile tracking, a
quadratic polynomial fits a highly restricted physical situation. The quadratic
description is rendered invalid by such factors as air resiutence, chmfing
rocket thrusts, and stage separation. Since the correct physical description
is unknown, however, the quadratic polynomial is normally used.

The thaory presented balow is based on a polynomial model of degree n.
Three sections are dsvoted to the theory.

First, an algebraic derivation yields values of (a) snoothad positions
and correrponding derdivatives d""fsii/d)('n, (b) estimates of variances of
deS;i/dX'" when the noise correlation is not congidered, and (e) correction
factors to these variance estimates in order to take correlation into account.
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These correction factors are functions of the correlation coefficients and
the number of degrees of freedom in the smoothing span.

The second theory section is & matrix derivation which obtains (a) an
alternate expression for the polynomial cbtained used in the first section and

- (b) the relation between the number of degrees of freedom and the correlation

matrix.

The third section estimates the correlation coefficient in the correlation
matrix by using a Firgt Owder Markov approxmation.

The fourth section reports on difficulties encountered in applying the
theory to (a) the output of a white nolsa generator that has had First Order
Markov correlation introduced into it and (b) actual mimsile tracking data.
The basic problem is that the results appear to depend on analysis variables
which have no physical influence on the correlation present.

A brief £ifth section lists the primary cause of the difficulty and
possibla corrective procedures, This informatlon was provided by the panel
at the presentation of this precblem to the Twanty-Second (onference on the
Design of Experiments in Army Research, Development, and Testing.

XS 2, ALGEBRATC RELATION BETWEEN VARIANCE ESTIMATES FOR IGNORING AND
Co' - ) [}

This section discusses the effect on the covariance of measuremsnts,

COVCYy 42 ¥y4q-) = PCLI301%0008) VARCY,) (2.1)

on the variance of a leasgt-squares polynomial. If the data's correlation ls
either non-existent or ignored, the correlation cceffioclent, p(i,3,3” w,e),
is set aqual to § 34% In general, however, the measuring device's bandwidth

and measurement interval, w and s, result in o # §,,.. The following equaticns
trace the influence of the data correlation through the moving are smoothing
process,

The caloulation of the amoothed dependent variable does not formally
depend on the correlation in the data, An nth degree polyrcmial, Ys;i*j’ is

constructed through N data points., The gth point is in the center of this
smoothing span and j ranges from -a = «(N=1)/2 t0 o to locate individual
measuremants., The polynomial is a summation over orthonormal funotion which
are defined by

X
F.(ed) = § o, (% 2.2
1c$8) zzo e ¢ ] (2.2)
where orthonormality determines the ck!,'“ thus, the polynomial is
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L
_1’_8‘5.,'_3 u kgo Ak(:U Fk(sj)lﬂ kzt‘) EEO Ak(i) ckz(j) e (2'3) ' ’

A least-squares caleulation minimizes

524 %" jg-q (Ys‘_i"'j..yi*j)l | - (2.8

to determine the constants ‘to be

T e SR R Y I G R T I A R R

Akm.jz_d SCTE AV | (2.8)

The n th derivative of YS; i is obrained by m differentiations of YS;i +3 with
respect to (X:L + 8]) and then setting J equal to 0; this results in

d'yg,,/ax" s [(1/3’“) dn?s;i'*j/djm]j,o = (mi/e™ )j ALK C

kam
. § A iy (2.8)

where

8 ks=m !.IO

ajmlm;\- E Cm(j)" .

Since the de i/dﬂ" values are functions of the Yi-'-j data through the
Ak(i) values, the mrs in these derivatives are also dependent on the errors
and correlation of the Yy + data. 'The variance of dmy i/dx'“ is caloulated
from expeatation relations to be

vm(d"’vs;i/dx"‘) e (mi/g™E T

COVIA (1) ,A (L)) . (2.
k’m ka.m Ckmck 11} Ak '13(

The covariance of Ak'(i) and Ak,(i) is found to be




Q o
COVLA, (1) ,A,.(1)] = jz_q yZ.u"k““" x

whare Yu;i-o'j is the true mean of the i+] poi.pt. By using
C!O\I(‘.{i,‘,j ‘Yi*j W)= Bjj,VAR(Yi)
for

E[(Yi"'j-yl-l;i*j)cyi‘*j ‘-YUii"'j d)] »
the correlation-ignored result is found to be

n
Mys
LVARCA™Y g 4 /8™ Do _gq ® (mi/e™® VAR(Y,) kzm O - €2,8)

The degreas of freedom used in VAR(Yi) is n+l less than N. By using the gereral
exprassion p(i,3,3%,w,8) VAR(Y1> for OOV(th 'Yi+j“)' the correlation-considered

result is found and the ratio of the correlation~considered estimate of variance
to the correlation-igrnored estimate is caloulated to be the product of

P Yy OFY O CranienOieaCe g < 00443,4% 0,8
R (1) » KERLIC Fn 250 4780 fing §ing . (2.10)
kgm cm’
where ($)* « 1 for Jutx0 and (3% = 1 for §“e87s0, and
r, o+ Bl | (2.11)

where T is the "true" reduction in the degrees of freedom discussed in Section 3,

For segmante of the data in which the correlation coefficient may be
assumed oonstant in 1 and symmetric in j and j“, the Rm(i) may be rewritten

to expedite camputer calculations. For j=i“, the correlation coefficient must

R T PRI T W e

At D £ T i




O e e e SO T T

T

e

i3
e
i
7

be unity. This fact and the symmetry about the two diagonals in the array of
possible 4 and 4° values are used to rewrite the numerator of Rope The i

dafinition and orthoncrmality of the Fk(aj) funotions simplify the sum over '
the main diagonaly the result is . . §

n ok k* (N1)/2
Rﬂ'h " [ksm c]an [z chn + 2 kz k‘zm z§0 2‘20 jil ‘i‘

CoCienCraCeng 4% 83 =3 0,00

k  k® (N=1)/2 (3=1)

: | n n
| +4 37 )

TR L SRR SR P R

kam k“=m 420 4780 Jel 4 aa(del)

%Ck.mcmck..z,(j)"(j‘)’“p(j.j‘.w.lzl (2,12)
where (3% o 1 for 358720,
The constants in the orthonormal functions may be obtained by a bootstrap '

derivation by starting with c o The non-zerc constants for subscripts less
than or equal to § are :

¢ s SIN

¢, :l 2 J12/NNT-DY ,%

e of BIN*-1) ZUN(N®~4)

"' s/ 180/N(NZLLY(NELY)

) TN -D =0 (-8 b
,, ® VTR R-m -8 - i
¢ = S BL(NY~1) (NT=9)/6uN(NY=i) (NT=18) ,

4o

C., " </ 225(aNT-13) Y/NCNT-1) (NTL) (NT=9) (NT-16) A

SR s g R R S S e g ow o
(2]

=
©




C =/ UWL0O/NCN*~1) (N?=4) (N*-9)(N2-18) ,
[ Y Y ‘ o .

c,, -\/"11(;5N“-2aon?+u07>‘/15N(N‘-1><N'-u)(N‘ib>(u'-155(N*-2s> .
c,, * /EII00CNT-D T/NNT-L) (NE- ) (=D (NT=16)CNT=26) 5 and

! 'c.. x JBREEWH/NCNY =13 (=) (NT-8) (NI-16) CNT~28) . (2.19)

T- The systematic ocourrence of zercs in the table of cm values may be used to
further expedite computer caloulations. Since G, * 0 unless k + 2 is even,

each term in the sums of Equation (2.12) is identically zerc unless k + m,
k* +my k + &, and k* + 4* are all esven, '

. 8. MATRIX DERTVATION OF NUMBER OF DEGREES OF FREEDOM, 4
The raw variance of data analyzed with a smoothing span of N points s Av

given by !

ECE,' E,) ]

VAR = -—w ' (3,1) i

The numberetor, E(g.T g,). is the axpectation value for the sum of the squares i g

of the differences betwsen data values and correspending smoothed or #iltered o

values, The dencminator, N-T, is called the nunber of degrees of freedom. The b

" veduction in the degrees of freedom, T, is dependent on the correlation of the
' data in the snoothing span. For zero correlation, T ls one more than the degree s
| of the polynomial used for amoothing. This correspends to the number of constants )
in the ﬂ.‘ommial. For the total correlaticon, T ip equal to Ny In this case,
the variance is undefined. The follewing der:'.vntion vields a description of
the degress of freedom for intermediate correlations.

The dependent variables, Y,,, may be arranged in N by 1 matrices, Each of

these column matrices are related to the independent variables, polynomial
ooefficlents, and random errors by

YuXB+E (8.2

N TR

iE s

T A L e

f The rth row of the rendom efror colum matrix, Ec' contains the error, €t of i
l the rth depandent variable, Y, The nth degree polynomial coefficients, Bn.

! nn—l‘ seey BO' are in the n+l by 1 colum matrix B, The N by n¢l matrix X may
|
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bs considered as a composite of n+l column matrices, Xo» )_fn_' Y seiy ‘50. The
rth row of each X, contains the oth power of the independent variable X, that
mppnd! to the dependent variable Y. The smoothed or filtered dependent
variables Yr,.' are given b! the independant variables, Xy and estimarag of the |

‘polynomial coefficients, By Iv .
‘ g L 5 § . ’ . (3.3)

A least-gquares dalculation may be used to find E. The summation of squares
for the deviations, ~

5-&-% . (3.4)
is given by
JPE-R: (3.5)
ml.r' wl ~@

where E.T is the row matrix which is the tmgpo'u of the colum matrix Eq
containing the .. 's. Substituti.on of £, ® Y=Y » Y-X8, differentiation of the
sum of squares with rvespect to By and setting the result equal to zero yields

AR 0 = L-tXl, + 8Xx1,0 + LyTx1 + 87X, 0T Qe

where | is a coclum matrix defined in terma of Kronicher delta funotions,
Ch't s O if hﬂ. amxd Gh‘h et l, by

1
)
!
i
|
B |
o

) S0t
- I 9,1 (8.7 ‘j
o : | ;
L] b1 “

R - 1

' Since each of the two terma in Equation (3.8) are scalare (i.e., 1 by 1 matrices) i

and the second is the transpose of the firet, the two terms are equal. Thus, i
Equation (3.8) aimplifies to N
0= 20yTx1 + 8'XTX1 T 3.8) |
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This further simplifies to

T

= 0"y

'(3;a>

where tha "} suparscript is the standard notation for inverse. This result
utilizes the raw data to eatimate polynomial coefficients.

The raw variance of the data within the smoothing span is found by relating |

the expactation values of EQTE.. Ec £ and EeEcT' The first is estimated by
the sum of the squares of Y, -Y,, the second is the product of N and the desired

variance deroted by o, and the third Is the product of the correlation matrix,
v, and o?, Substitution of Equations (3.3) (3.9) and (3.2) into the definition

E, * Y=Y ylelds !

- Touymlel
£y 0 - x0Tm0 g,

(3.10)

where l is the standard unit matrix whose slements are defined by Iij " 6“,
and (xTX)"1 16 the inverse of {X'X) defined such that

KX = x0T e 1

Equation (3.10) leads immadiately to

T - T TormloT
ke Eo Ee Cl = XXXI7X ] Et ' (3,11

Taking the expectation value of Equatien (5.11) yields
. " T T T T -] T
Bfy Eg) = EEg E ) = E{ESX(XXNTIXNED

The firet term on the right is just No®. The last term mql/ be simplifed by

noting that the quantity in brwces is a 1 by 1 matrix, replacing this simple
matrix by itas tr*goe. and using the identify » TepHASES e

Trace (Qgg) : Trace (ggﬁ) & Trace (gﬁg)

Further simplification is made by interchanging the order of expectation and

trace cperations and finally by making the usual assumption thal the measuremants
in X are axact §o

T T
ELSXEE, )] = SOOE(EE, )
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?. w e - 1 pct
! The result is
: E(E,TE,) = No* - Trace {X(x0)-'x'ECEETV . (3.12)
. J; ' ’ .
| The use of E(_E.:‘EETS = Vol yields
: ;i A
J ; ' ' Th (8.19)
O 1 e et . .
g NeTrace(x (X X)~ X1V} |
‘,{}f g Equation (3.13) is cumberscma because the trace is parformed on an N by N matrix,
E ' Trace algebra converts the quantity inside the braces to a n+l by ntl matrix,
" Extimation of E( E.TE.) by E.TE. then yields an estimate of the raw variance to be
i!" ~ ap . L] L]
Ly T .
i . /} E'E
g N c* = a"# T-‘ . (allu)
1 '# N-Trace{ (X'X)=1X"VX}
ko :
3 The avaluation of the effective degrees of freedom, i.e., the denominator
- , of Equation (3,14) is dependent on the duta through V and the amoothing process
: through X end N. The X matrix is given in terms of %, = Js + s, where x, is
% . the mid-goint of the smoothing span ard s is the measurement interval, The
general form is
E " -1 -
‘Y: l - w-“ “Ea [ (RN NN 1
] R -1
; 5 ] x’;‘w"l xﬁa"’l XXRX] l (3!15) !
: -1
% o SUTEE ;‘

where o is defined by (N-1)/2, Although X depends on & and Xy» the degresn of

freedom do not, The independent variable's increments, s, has no effect because :
it does not effect elther the variance or the sum of the squares of the deviations. |
The mldpoint of the independent variable segment, %y has no effect under the

;
neceseary assumption that V matrix describes the correlation in all segments i
oonsidered, For computational eass, s and X, may be get equal to 1 and 0 for 5

R T U,

R T
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the degrees of freedom caloulation. 'I'his simplifies X3 to Xy ® 3+ The
caloulation of the ntl by ntl matrix, x VX, is further a plified if V is
deseribed w:lth a single Markov eons'cant p by Vg ® p' + The c't:her' n+l by

ol matadx, (X X)'.'. may be obtained by cithe:' analytically or computationally
‘#inding the :anwao of )

!

D5 s B B LN '

XTX .. ngn'l ngn‘z Ve fxn'l L] ' * (3-15)

R P oY B SR Y

where all surmations are over the range =a<i<a. The summations cver powars of j
may be found with either a computer or a mathematics handbook,

If one desires an explioit equation for the degrees o® freedom, the
procedure of the a.bovc plramgh can be cone analytically, The results for

nel, n=l, and n-2 ars, respectively:
IOF, # N = pdry Ho Vo o (3,27
DOF -V-,-}IE-(-H,HI VHy + Ho'V o:l y and (3.28)
(20;-1%52&*32 T
DOP.IN-WW“M‘ oF - E VH + Hl !51

where H ] is given by
-~ r —
(ma)d

Hy Cmart1)? (8, 20)

()
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with the understanding that {0]° = 1, For each of these three equations,
substitution of Ve ﬁot'oT yields zero, This simply states that totally
otrrelated data has zero degrees of freedom,

'If the identify matrix is used for V in Equations (3.17), (3.18), and
(3.19), the results are IOF, ® N-l, IOF  u N2, and IOF, « N-3, This ‘checks
with DOF,, ™ Nulr+l), 1.e., the number oé degrees of freedom eguals the number
of points in the amoothing span minus the number of constants in the polynomial.

4, ESTIMATE OF CORRELATION COEFTICIENTS,

The covariance of two raw data points, Yi+j and Yy 40 is related to
their correlation coefficient and the variance of the points in the range
e g (Jor 3 < i+a by .

OOV(YHj. Yi'.'j o) ® pi*j yied” VAR(Yi) ' (4.1)

The peeudo-deviations are defined by

vhere Ygii4 is not the true mean which would yield the true deviations; instead,
it Ls the kth degree polyncmially smoothed value from the operation

Yo Y \ (4. 3)
814+ ,,?_a % Turiep

The ﬂ"l are restricted by

' 1
pgﬂulp ) :
and are defined by Equation (2,6) with j e pand mn 0,

By using two fast Fourier transfurms and associated manipulations,
COV(a“j. li*jd. may be obtained, The needed quantities, however, are elther

COV(YiH. Y“j.) er TV and VAR(Yi). Unfortunately, these cannct be

obtained without applyiné mongtraints, Presented below ls a method of
determining Pisd,ieg” &0 VAR(YH aspuning that Y:H-j is a kth degree polynomial

with additive Firet Order Markov error.




By defining bp cpo - lp. the pseudo-deviations may be found from

143 * quu bP Yi"'ﬂ-*P ) | (4.4
By using )
1
Pz-u 'p "
and
E L »0
pi-g

the expectation value of (e e,., ) may bs shown to equal both COV(e
0 .m i+ 44 i43?

R qg_q By by OOV(Yguuims Yipyoug)

These results and the use of Equation (4.1) leads to an expression,

mV(Oi*jl .1"'3‘) u VAR(Y’.) ? y bp bq pi+j+p'1*j vq ! 4.8

pinu qlua
which relates the known pseudo-deviation covariances t¢ the desired raw date
ocrrelation factors. & equation cannct be solved for PLtd 44 however,

because the double summation is over (2a+1)! terma, In order to ciroumvent
this problem of having more unkrowns than equations, it is convenient to
mathematically model the oorrelation factor.

The First Order Mackov errer in the i+l point, €141 is given in terms

of a single Markov constant, p, the errer of the i point, €4 and a randem
variable, ":I.ﬂ' by =

ci‘l 2 p‘i * ni*l [} (4.!)
Relating expectation values of ¢ -, ‘i+j) for all values of j may be used to
express the correlation coefficl.t Py,4 as
Py,3° ® 13371, (4.7)
136
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By using Equation (4.7) and defining an index ¢ = 3° - j, Equation (4.5)
beccmas

v L) r VARCY |¢+q=p| .
o (.i*j’ .i*j ( 1) pz_a qz_u bp bq [«] ’ (4.8)
This set of equations has only two unknowns, p and VAR(Yi). The straight-
forward approach would be to defines a deviation by

A COVCay,y1 85,40 = VARCY,) P 0§ non et | (. §)

b
Po=a Q=0 P Q
caloulate a sum of squares by
2o
s ] At (4,20
$u=20

and £ind the values of § and 62k(¥i) that simultaneously satisfy

0 g:]
" and | |
88
O WY;T] ﬁ

Unfortunately, the direct procedure is algebraically intractable., An
-lltﬁ@hnteq:;pv&mﬁxim to firet periorm a caloulation of Equation (4,12) and

find the

(Yi> as a function of p to be

S Eovca o) Ib b p|¢*q'P|_-J
14444
@(Yi) o 85220 L I A ; (4,13)

‘g"“(g LB b ol#+a-pl )f




and second, define a new deviation as a function of p only as

4 = h ]

and graphically find § as the value of p which minimizes
I - (4.18)

¢

where ¢ is still bounded by -2a < ¢ < 20. In this graphical procedure 3” is
of course a function of p. The saving restriction which makes the proredure
tractable is that p is bounded by -1 € p < +1, The computation work is still
considerable; however, so it is worthwhile to use the invariance under change

. \ +q= Y -
in sign of ¢ of COV(ei+j, ei+j+¢)’ g é bp bq p|¢ q Pl, and A°(¢),

5. NUMERICAL RESULTS. Twc sets of numbers have been analyzed in order to
getermine the usefuiness of the theory in the last three sections. The first
pet has been generated by using a random noise generator and introducing First
Order Markov corralation of Jnown p. The second set is from a missile versus
drone test at White Sands Missile Range.

The generated numbers do not lead to complately desirable results from the
analysis. Table I shows the inout and one set of output of the computerized
equations from the last three secti.ns. For large values of p, the two resulting
variance estimates agree witi each other but Aiverse considerably from the input
variarce, The basic discrepancy occurs in tha output p.

Comparison of the left and right columns or Table I shows deviations for
all values of p, Table II shows sample output of p's for .anges of smoothing
span N and polynomial degree n., Since the output average is 0.%7 ¢ 0,07 when
the input is 0.5, and 0.17 ¢ 0.05 when the input is 0.2, it appears that the
problem is in the variability of the output.

Analyzing data from missile versus drone missions displays more variability
of the output. Table IIT shows the results of varying smoothing =pan and/or
polynomial degree on missile position data. The resulting output p varies in
an unsystematic manner, A further lack of uniformity is shown in Table IV. Tha
drone, which the missile of Table III was attacking, was airborne for sufficient
time to analyze eight successive segments of 256 data points. The variation in
output p between segments is evident; but again there is no evident system of
variation. A final illustration of the nonwuniformity of the output p is shown
in Table V. The Cartesian coordinates of Table IV were calculated from azinuths
and elevations measured with several cinetheodolites. Table V shows the averages
and variance estimates of five elevation output p's from one 2inetheodolite. Co




6, POSSIBLE CAUSES OF DIFFICULTIES. The panel at the Twenty=-Second
Conference on the Design of Experiments in Army Research, Development, and
Testing made some commants on this problem.

Firet, the use of polynomlials was seriously questioned. The fluxuation
in caleculated p should not occur Lf the mathematical model fits the Ehysieal
situation. Since the form of the equation for missile trajectories is unknown
except in jdealized ciroumstances, a parameter free approach was suggested,

Secornd, if polynomials must be used to compare with current correlatione
ignored results using quadratics, it was suggested that the sum of squares of
deviations should not be minimized; instead of deviation, the deviation divided
by the square rcot of a previous estimate of the variance should be used. This
procedure, which would change both the position estimates and its variance
estimates, should be iterated until tre position estimates stablize.

Third, since the path of an object depends on previous position, veloeity, %
and acceleration of the object and not on future values, it was suggested that i
egtimates of position and variance should be determined from the forward time !
endiof the smoothing span, instead of its midpoint, estimate positicn and ;
variance. ]

7. ACKNOWLEDGEMENT., In addition to the members of the panel at the
Twenty-5Second Confererce on the Design of Experiments, several personnel at
White Sands Missile Range have centributed to this project. A special
acknowledgement is due to Elton P. Avara, Atmospheric Sciences Laboratory,
Mateorological Satellite Tech Area, WSMR.
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“ QUTEUT USING n=0 AND Nz17
| INPUT | "RAW VARIANCE" |
! . RV T VARIANGE | RS OF |  CORRECIED :
: OF | OF GENERATOR |  FOR DEGREES | p = o® 0
: : | GOVERATOR | GENERATOR | OUTPUT OF FREEDOM | ROUTINE | ESTIMATE
.0 1 1.08 1,14 1,13 .06
1 2 .97 .96 .99 12
. .2 1 .98 .9l .86 W11
.2 1 .o .85 .86 .27
" 1 1,02 .87 .80 7
B 1 1,07 1,12 1,18 .61
6 1 .98 1,01 1.12 .66
x N 1 1.0 .92 1,08 77
.8 1 .84 .67 .73 .70
.9 1 .84 43 7 78 3
|
]
| :‘,
? ?
| ; i
y |
s 3
l .
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TABLE III
MISSILE ANALYSIS

_ BMOOTHING ~ OUTPUT o : |
SPAN nelorld ne 2or3 nsbhors ;
7 .02 20 .8 :
1 , .00 .09 .30 ;
16 .10 .OH | .09 1
21 .36 108 B/ }
3l .58 /10 .07
TABLE IV ;
DRONE ANALYSIS
OUIPUT FOR n = 2 on 3 AND SMOOTHING SPAN = 1§
SEQUENT X ¥ 2 AVERAGE
1 .39 .80 .59 .89 o
2 W48 .34 48 W43 2
3 .87 .31 59 M9 C
i} '
4 .89 .69 .50 .69
8 86 .80 .68 .78 .
6 1,00 43 .52 .88 |
7 1.00 1.00 1.00 1,00
8 -.06 -, 08 .28 .08
AVERAGE 4 JBU .58 .58 o
P
TABLE V Co
OUTPUT p FOR ELEVATION OF DRONE FROM P
FIVE SUCCESSIVE SEGMENTS ON ONE FILM ¢
o
ns0ori ne® 2or3 nshors | ;i

-58 E 127 .34 3 039 -008 F n62
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ROBUST OUTLIER DETECTION IN TRAJECTORY DATA REDUCTION

Wil1iam S. Agee and Robert H. Turner
. Analysis and Computation Division
National Range Operations Directorate
US Army White Sands Missile Range
White Sands Missile Range, NM 88002

ABSTRACT. A data reduction program at White Sands M{ssile Range that
often has an hour of flight time is called the Multiple Radar Tracking
Syssam (MRTS). Undetected outliers destroy automated data reduction
causing a significant number of reruns with human detection of thesa out-
11ers. The procedure described in this paper enables the MRTS to reduce
large quantities of radar data with very 11ttle chance of being influen-
ced or ruined by outliers.

Outliers are detected by examining residuals from a least squares
estimation. Three robust mathods of estimation which are insensitive to
:gt1ierst;r§ describad. The masking effect is almost nonexistent in

856 methoas.

1. julageungyl. An entire vrajectory of Cartesian position velo-
city and acceleration data is produced from radar (range, azimuth, and
elevation) data by the Multiple Radar Trajaectory System (MRTS). The MRTS

‘consists of four distinct areas:

a. Data gathered from several sources are merged onto one file after
baing calibrated and time corrected.

b. A preprocessor aliminates outliers and computes initial observa-
tion variances and initial X, Y, Z positions. The robust outljer detect-
or 18 in this staga.

c. A batch processor produces the entire trajectory simultaneously
from a1l observations zUXCCpt out11|rs).

d. A fixed 1ag optimal smoother then produces smoothed positions,
velocitios and accelerations.

The remainder of this paper is about the preprocessor stcgo. As the
program 1s at present, whenever outliers are found they are discarded
instead of being dnwo;qhtod.

In order to detect outliers an sxamination of residuals should be
made. But these residuals must not come from an estimation of the ob-
garvation process that 18 influencud by the outljers. Three estimation
schames are described which are resistant to outliers. Two methods of
examining the residuals for outlying observations are described. The use
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of the cutlfer resistant estimation and residual examination make up the i
robust outlier detector used in the preprocessor stage of the MRTS. '

2. QUTLIER RESISTANT ESTIMATION. The observation madel is
X.| - 'o L .1t1 * lzt.'z +* ‘1. 1'_. 1; n

The thrae methods described are called: N y

8. Least squares with robust weights,
b. Brown-Mood, and
6. Theil=Sen.

The first one i3 used in the MRTS.

The medfan of the observations x* ,
For each observation compute )

Solve for the f
RT . “O"‘ 1‘2)' '

by minimizing

2
W, (X,=AT
,2, i (x4=ATy)

Tt i G e i e




e L SR '
T TR R I | T AT Ak bbr n e -

Brown-Mood. The following steps show the {terative process for slope
and curvature coefficients: i Pe

b.

€.

Initialize

W0 if? u g

S t* = med (t,)

¢t »omed (t,>t%)

¢ = med (t,<t*)

3 =0
Find median residual in each hals
x* = med (xi-agd)ti-iéd)tf)

t1’t*

x = med (xi-léd)ti-iéd)tf)

t-lit*

Update coefficients

A1) w8 4 ) [&-’:}]

1 + e
LI e L

The relaxation factor of 1/2 seems to provide faster and more stable cone
vergence,

d.

Repeat steps two and three until gonvergence, then compute the

intercept coefficient
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g = med (xp-itd e a0 L
«Sen. This method 13 not {terative but 1t does require many

d1v1 i; aifferences be taken. First, all the divided differehces dj ¢
without duplication ‘ ‘ .

’ X=X
dy g " %§=¥} it

To compute all possible divided differences of the dj,{ would take too
much time and space. Instead a smaller number of divided differences
which represent the dj,i well {s computed

.(1 190,1422) = Mﬁtﬂ-’-ﬂ%ﬁnﬂaﬁ
e 1424”44

for
iwl, n=2
L=, [n/3)
Let
iy = mad (e(1,141,1+21))
Now
d3.1 n ;i;;} Aty (tyhty)
since
Xy " ap gt nztf
Let

‘1 » med (dd.i'lz(ti*td))
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and finally

2
_foi- med ‘xifi]ﬁijﬁgti)

EGTION. A Grubb's-type statistic proposed by Teitjen

and Moore [ 2] fs described. A modified version'of this statistic is used
in the MRTS. ' :

-ﬂgﬁyphg~lgpg §;$;j « A1l residuals are ordered by absolute valyes.
We ﬁae: 4 change of variable names so that the p's correspond to the ob-
‘servations

C12q1lZgls e a2,
21 » rd(l)' vee Zn L ] 'nd(n)
After finding the largest gap
UZpaar | = 1Zn.kl)
compute the test statistic
ﬂ-k 2
Z (21'zh)

E (n) » L=
k
1§1 UR

where
n=Kk
L 4
} L%
and
} 2
 SELI

If Ex(n) 1s smaller than the desired critical value, we conclude that
these k most extreme residuals correspond to outlying observations.
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A This is the same as previously des-
eribed except for the minator of the test statistic and the critical
value selected. Instead of testing for k outliers in n samples, we test

-

. ..- for ona-outliar {n n-k+1 samples.. We compute

I (2 -zk
E, (nekel) o g-;;,———
where
n=k
S
7, » Ll
and
n=k+]

A
L ‘i’%'T"

If E (n-k+1) 1s smaller than the desired critical value, we conclude that
the l most extreme of the n residuals correspond to outlying observations.

3. gxgqghég. The three previously described estimation procedures
and an unweighted least squares were applied to four sets of real data.
The original sats of data and residuals from each estimation are 1isted.

iﬁgmqlgTa‘; a set of 16 observations where the last two are outliers

(resTduaTex
LEAST SQUARES

1. -, 0061 -668 =74 =11 ~3829
2. =-.0048 =281 =47 -6 ~8470
3. . 0044 2 -22 0 -753¢2
4. -, 0041 287 0 é ~6991

; : - & P [
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LEAST SQUARES ‘
~ QRSERVATIONS MW/RQBUST WIS BROWN-MOOD IHEIL-SEN LEAST SQUARES
5. -, 0037 418 20 " -4864

6. -.0033 867 87 67 . «1071
7. ~.0033 824 5 22 4207
8. =, 0027 419 13 -22 11081
9. -.0083 342 72 33 19650
10. =-.002} -8 « -1 29815
1. -, 0017 -227 «17 «56 41376
12. «.0013 ~520 3 0 84731
13. =, 0010 -$88 «17 -44 69583
14, «.0006€ =1421 29 1 8s129
18, -, 9860 «960730 -958727  -958733 854528
16. 4451 442389 445014 446022 668910

« & sat of 15 observations where the third, fourth and
fiftE are ou§110rs (residualsx108): '

LEAST SQUARES
OISERVATIONS H/ROBUST TS BAOHN-YOOD THEIL-SEN LEAST SOUARES

1. 21709 -1611 =444 =136 -332222
B 21824 ~1497 «J13 =87 =314194
3. 98819 734413 735891 736744 441640
4. 94511 723287 724437 724529 452449
5. 93469 2116 713216 713266 466224
¢, 22288 ~1081 -24 23 221906
7 2408 «943 11 -39 =193910
a. 22530 =760 54 9 163748
9, 22662 -612 61 ) 13161}
10. 22770 ~510 .0 «47 -§7508
1. 22800 =253 82 0 61280
18, .23028 =101 18 10 -23066
13. 23186 78 «39 7 17144
14. 23286 286 =81 0 §9399
18. 23418 602 =140 0 103670

= 3 sot of 15 observations whare the twelfth, thirteenth,

and 55’9..n£ﬁ are outlfers (residualax106):

LEAST SQUARES
W/ROBUST WIS BROWN-MDOD IHEIL-SEN LEAST SQUARES

1.  =1.70987 -3369 -599 9 157774
2. -1.70942 -867 387 0 =204
. =1.70893 - 991 228 12 108480
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Egamg%; %
and twenty-

rst are outliers,

LEAST SQUARES
mwwwﬁ_m_

'1-70845
«1,70793
-1,70741
«1,70682
‘1 070623
«1, 70671
«1.70510
«1.70449

1.43777

1.44602
=1.702567
1.44667

2166

708
2576

1841.

402
=172
-4456
«7866
3129701
3132686
22044
3120482

61

54
=159
-186
~233
-282
-26¢
=232
3141458
3149144

0
3148695

bits and zeroed data (residualsx10f):

.|°°988
=. 00995
-, 00976
=.01017
'001015
-.01023

0
=,01047
'001083
-001089
-,01089

c=0N21
=.01143
-.01152
-.01188
-.01200
«.01206
«,01241
-,01239
01218
01301

LEAST SQUARES
OBSERVATIONS W/ROBUST WS  BROWN-MOOD THEIL-SEN LEAST SQUARES

-123

=423
-337
9
=243
-78
14
10404
86
=103
0
164
8
-46
30
~133
<114
-8
=188
]

247
26780

-14

a3

12

-28

-28
=45
3141668
3149153

=121
3148416

o

-248
-178
154
-114
39
12
10487
162
-52
38
182
"
-60
0
-179
-178
-85
-282
-108
24587
25603

BROWN-MOOD  THEIL-SEN LEAST SQUARES

169227
181087
11102
9099
~144780
-380895
-608277
-917885
1862231
1456410
-2168177
473139

- a set of 21 obsarvations whare the seventh, twentieth,
This example 11lustrates dropped sign

-4433
-2839
=1203
-386
632
1381
12182
2034
1807
1661
1366

e R Y
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4. CONCLUSIONS
a. Least Squares with Robust No19ht:;

%1) Almost always can produce residuals which reveal up to half the
sample to be outliers, '

(2) 1Is the fastest of the three est1m$$ors described, and

(3) May be improved with other choices for waights and jteration,
b. Brown-Mood Estimator: |

(1) Has unknown convergence proparties and

(2) May not work {if too many outliers are in one half,

¢+ Theil-Sen Estimator:

(1) Has robust coefficient estimates,

(2) 1s slowest and simplest of the three extimators described, and

(3) May be made more afficient by tak1n3 advantage of eyually spaced
data and foerthar schemes of selecting dividaed differences.

d. ‘Grubbs'Typa Statistic:
(1) Has no masking effect,
(2) 1Is fast and easy to use, and

(31 Could use 2d difference criteria to determine which k residuals
to be tested. 4 _

e, Modified Grubbs-Type Statistic:
(1) Simpiifies tabie look-up and

52) Detects same outliers as the Grubbs'-type statistic on all
samples tried so far,




B, e

§. REFERENCES

) El] Mood, A. M., "Introduction to_the'Theoky.of.Stafist1cs“;y?jrstw_~
Edition 1950, McGraw-Hi11, pp 408-410. . . ’ S

{2] Theil, H., "A Rank Invariant Method of Linear and Polynomisl. .. -
Regression Analysis", Indag Math 1950, Vol 12, p 85-91, 173-177, 467-482. .

3] Tietjen, G. L. and R. H. Moore, "Some Grubbs-Tg;e Statistics for

the Eetection of Sevaral Outliers", Technometrics Aug 1972, Vol 14 Nr 3,
op 583-597. -

152




TABLE LOOK-UP AND INTERPOLATION FOR A NORMAL ;
' RANDOM NQMBER GENERATOR

. Wi114am L. Shepherd and John N. Hynes
Systems Managemert Division
. Instrymentation Directorate
o US Armﬁ White Sands Missile Range
White Sands Missile Range, New Mexico 88002

e e e e ‘--f"""‘a,"f;'

§ ABSTRACT. A normal random humber generator using table look-up and inter-
: poiation for the inverse normal distribution function is presanted and

: comga:ﬂd ﬂ% one where the inverse function is computed from a commonly

used formula, ‘

1. INTRODUCTION. In Monte Carlo problems and in simulations of noisy

: neasurements, the cost effectiveness of the required normal pseudo-random

' : _number generators is sti1]1 of some economic importance, We present and

‘ compare two such generators. One of them 1s availabla on the Univac 1108
computer at White Sands Missile Range (WSMR); the other is the main subject
of this report.

2., INVERSE DiSTRIBUTION FUNCTION METHOD. Let

2
Plx) w -+ X L g7t /2 gy (2.1)
7z jo /5
and {y} be the output (seguence) generated by a uniform random number
generator with density function equal to 1 over the interval [0, 1] and

0 elsawhere. Then {P'1( )} can be thought of as the output of an n(0, 1)
random number generator {1. p. §50]. As mentioned in [1], the principal

difficulty in using this principle is in the computation of P"(y). In
one of the normal random number generators in use at WSMR, P'1(y) is
computed by the formulas

b Ply) = - P00 - y) for4-<y<l (2.2)

o 2

b A+ a,n + a,n 1

s . o 1 EJ& for0 <y < .
&é 1 + an + bzn + baﬁs‘ L




R 1

i | ey 2618817 by = 1.432788

' 3 - ,eoéasa ' by = 189269

| " 3, * 010328 by = .001038

with error Jess than 4.5 x 10°%, (This formula 1s alsc given 4n [1] and
[2].) We refer to this generator as Generator A.

In the f011ow1ng sections, we describe another approximation to P"(x).
referrad to as Ganerator B.

3. A SPLINE APPROXIMATION 70 P~l(y). First, consider

aly) = gla) + g'(a)ly - &) +aly - 0% foracy 5_—1-5—9—

“g(b) + g (b)y - b) +yly - B for APy b L (3

‘ S.th-b-a.yn—Li_b_' ;
. o= ",%2' (9(b) - gla)) - -155—- (3'(a) +g'(h)) (3.2) :
‘ ‘ “f
1 ARE SCOREOEE SCNCETHONES (3.3) 4
| * With some laborious manipulation, it can be verified that ;‘é
: : gly-) = oly*) g'{y-) = g'(y*) . (3.4) A
Lo i
, if? t g(y) 1s a quadratic spline, with knots {a, ¥, b}, on [a, b], which inter- ;g
PR polates locally between (a, g(a)) and (b, g(b)). )
i ‘ 4
\Af ' ]
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Now, consider the 2N+1 knots
t°'+‘t2<t4ooo<t2N‘1 ’

t21+] u ‘%‘ (tz.' + t21+2). 1 L O. 1. T} N‘] N

~ TR A TR

and the splines

- rreecmRe?

91(.Y) - P-1(t21) + P-1'(t21>(y - tm) + 91(.Y - t21>2 ) tz.' Y= t2'|+'l
= P tgpag) + P (tggad v = topag) * 1yl = b 4 (308)

Cae1 2V < b

where

8y ® —:?— (P (ty04p) = PN (15)) - ‘E]»T (3711 (ty0) + PN (b)) L (3.6)

vy -;;— (" tgpag) = P71 (0)) + g (371 (tp0,) # P10 1y ) 0 (3)

h.‘ - t21+2 - t21 . (3.8)
Define
g(t) = g4(t) by st <ty o 101, 0 N1 (3.9)

From (3.1), (3.2), and (3.3), with a, b, g(a), g(b), g'(a), and g'(b) re-

placed by toys toyua: P"(t21). P'1(t21+2). P"'(t21), P-1'(t21+22’ g(t)
is a spline agreeing, in function and first derivative, with pe'(t) on
:tgg)f_o. (g(t) also has the knots {t21+1}¥:3.) g(t) interpolates the
able

-1 -1 N
{tgqe P i{tpy)s Pty ) Hug - (3.10)

R
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In order to use » (3.10) for a normal random number generator, we need
a suitable tab1o muans for computing P(t) for tzN <t <,
Define ' '

1g = 711y py = moxiat) - P10 E € [abDy 4 bel

We need a tyy close to 1 and & sequence {t21}?_° with a small N so that
.1 '
g =P ll(1/2't2N) < ¢ for a prescribed tolerance ¢, We used numerica)

search not described in detail hare, It took up much computer time and is
not optimal. Essentially, we started with t, " '1?" computed t, %o that

-1

llg - P ll(to.t)i" ' t <ty
=1

Hg'P ||(t°.t)’5 ) t’tg '

then recursively determined toqsp $0 that

-1
llg =P Il(t21.t) 2e oy by st <ty

> ¢ ’ t > t21+2 '
toy Was determined empirically by stopping when toy = ton.p Wes Tess than
a prescribed tolerance s.

Fo¥ ?hc computation of P"(y) in the above, we used Newton's method for
solving

P(y) = x= 0
for x, with
Py) = == (1 + exly//D)

n+

. B T (0
erf y y= nzo (~1) -ﬁT¥!ﬁ:T7"
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A

-

from [1], and
2 ‘
pligy) - -—--H--—
W P'(P™ (¥))

P'(x) -;%;r~|fx2/2

n

o= T

B

Our numerical experience indicated that naar one the knot spacing needed
to obtain the required accuracy 1s not feasible, as N is Targe. We now

prasent two methods for computing P (t) for by <t <l ? E

fLrganiy

The first method is to use the approximation (2.2) from Genarator A.

The second method 1s to approximate P'1(x) by a quadratic spline with ;ﬁ
knots {toy, -%-(1 + tZN)' 1} which has the same area under the curve as

does P'l(t) over each of the intervals [tZN' —%—(tZN + 1)), and [--%-—(t2N + 1), 1],
(A discussion 18 given in Appendix A.)

Table 2, 3 gives the re$u1s1te coefficiants for N = 29, N = 89, respectively.
LEFT INTERVAL, RIGHT INTERVAL refer to [t21. t21+1]. [t21+1. t21+2]. respec-

tively. The last row shows 1 to be & knot. The entries in this row were
obtained according to the equal area criterion and would not be used in a
computer program whare a rational approximation is used for Loy < t <],
EXAMPLE FOR TABLE 2: 5
For 1 = 13, .91450227) < t < .920905352 ;@
and 8
4 g(t) = 1.41118763 + 6.78465741(t - .920906352)
+ 30,8378448(¢ - .920905352)2 . ‘};

?
b 4, NUMERICAL RESULTS. The Generator B was run under 4 separate conditions
g as indicated in Table 1. The interpolation tolerance for N » 29 1s 10'4

i %ng1fo; N =891t 15 10°5, Results for Ganerator A are also includes in
g able 1.




TABLE 1. AVERAGE RUN TIMES (CPU) IN SECONDS WITH IDENTICAL INPUT
OF 10,000 POINTS

QENERATOR A 2,427272

GENERATOR B

For N = 29 (with rational function approximation %
at the end) 1.307336 _

j& é For N = 29 (with spline approximation at the end) 1.111576

. For N = 89 (with rational function approximation
B at the end) 1.503344

kY For N = 89 (with spline approximation at the end) 1.278524

Pl 5. CONGCLUSI IT10 RCH NEEDED. From Table 1, the fol- 3
E? ; Towing empirical inferences can be made. %
?" !

5\

a. Generator B with N = 29 and with either end option is s1ight1y more
accurate, and about twice as fast as Genarator A. It requires 180G stored

constants.

b, As compared to Table 2, Table 3 provides for interpolation over a i
larger interval, 1s a 1ittle slower, provides six significant digit inter-
polation accuracy but requires 543 stored constants. 3

Additional research could be done in the approximations at the end. (2.2)
1s not necessarily optimal for by st < 1.

The constants for Generator B are believed to be of nine significant digit
S accuracy. It 13 possible that they do not have to be this accurate.
o Further research could address this problem,

|

]

]

i

Since computation for N = 89 s only a 1ittle slower than for N = 29, but j
interpolates much more accurately, we think more of the CPU time 1s used in ‘ 7
the interpolation than in the table Took-up logic. As higher order inter= '%
polation 1s slower than quadratic, there is not much advantage in using 1t ,
in order to reduce the required numbar of knots. H
]
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, A. In this Appendix, we qutline the procedurs for axtendin g(t)
‘oavemr“ %ﬁ. Snterwﬂ Et 9 |5r1nc1pa11y. we w:nt to exh1b1t (K 3) agd

(A.4), omitting most of the detail,
First, we want 8 so that, with

QN(t) é P-1 (tzN) + P.h(tZN)(t - tZN) + a(t ‘tZN)z ’ (A1)

for toy < t _<_+ (‘ZN +1) = %, we have

? - ? "] . A.z
f‘zn oy(tdt [tZNP (t)dt (A.2)

By the change of variables t » P(x), we have

f-f P=T(t)dt = IP '@ x P'{x)dx
2N Nty

.
" —/2]:_- /P_.IEEZN) x exp(=x2/2)dx

. —/Jé-_- (exple (P (4 N2] = ewpl-(P-1(ENED) . (A3)
Similarly,
1 p=1 . n gel ol A2 A4
fiP (t)dt !;f,v'vf.fP (t)dt ro expl-(P"'(¥))%] (A.4)

(A.3), (A.1), and (A.2) yield
B = ﬁF (P-1 (tzn)ﬁ‘ - tzN) + '%‘ P-h(tZN)(.‘E - tZN)z

- —/;—-_-_- (exp[-(P"(tZN))z] - expl=(PT1(E))21))

T
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For 'E stslive procud similarly £ dafine
- 9N(t) . :Nm . gnmu B m . ?)’ .

_Jip_(g"(‘f)u-?ﬂ—}-g(‘i)(‘l-'f) —l—expt (P'1(?))ZJ) .

m
With 8 and v so determined,
ple) mgylt) » ty st el
L It should bo noted that gN(t) is not, strictly, an interpolation function,
3
25
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EIGENVECTORS ANALYSIS OF EMPIRICAL DATA
VERSUS UTILIZATION OF STANDARD FUNCTIONS

- ol T ST

Oskar M, Fssenwanger
Physical Sciences Directorate
Techiology laboratory
US Army Missile Research and Development Command
Redstone Arssnal, Alabama 35809

A%ﬂgnﬁgz. Parameterization of empirisal data (e.g., the wind pro-
£iles from surface to 23 Km altitude) in many cases entaila the
approximation of data by mathematical functions. In general, several
options which lead to solutions are avallable but the question of which
is the most suitabls form is sometimes difficult to answer.

Often & specific goal of approximating data by mathematical funotions
is the derivation of one characteristic parameter or variate. Thaoreti-
cally, eigenvector analysis (or equivalently tha development of empirical
polynomials) should lead to maxiium information by a single paramataer,

A comparison batween approximations by eigenvectors and standard
(orthogonal) functions has bean made. It is shown that in particular
cases standard functions can achieve squivalent reductions of the
variance and they may be simpler and more sconomical to compute than
elgenvector functions,

i, ;NI%Q%QQI;Q%. Parametrization of atmospheris data (such as
the wind profile as function of the altitude) requires the derivation
of suitable mathemutical sxpressiona. The availabllity of high speed
slactronic data processing tools has opened the door to a utilization
of the most sophisticated mathematical tools even for the genarally
huge collectives of atmospheric duta. For example, the caloulation of
empirical polynomials (or sigenvectors in mathematical terminolegy) is
now posaible without too much difficulty for the large dimensions of
atmoapharic data matrices, Consequently it is very tempting to ''grind"
huge data collections through the vomputers without considering how
much benwfit these highly sophisticated tools render compared with the
application of standard funations or simple paramsters,

In this article, soma light is shed on the utilisation of empirical
polynomials in comparison with the use of standard funotions exemplified i
by the wind profiles of certain altitude ranges, Under curtain condie
tions, atandard funetiona can achieva an equivalent reduction of the
variance to the one obtained by algenvector analysis.

"

i

3. i _CALOUIATICON OF ENVEGIORS. The problem under consideras~
tion is the development o pruplr unct ons for the wind apead profile
Vh where the h is & subscript denoting the altitude, Vh designates a

mean wind speed profile, The wind direction 9h can be treated aquivae i
lently., We formulate the representation of the wind spaed profile:

B N
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Yoot "Vh "B %n B, %20t Baut facn O

vhere £ = 1,.,,, N, and n < N.l in this equation the coefficients BJ i
. ]
and the functions ‘j p st ba determined,
»

The development of optimized characteristic functions 03 h i
oA
known problem of matrix analysis, A mathematical formulation is:

LR @)
where M¢ designates a matrix of eigenvectors (or polynomials), MV the

data matrix for the wind profile, and )& a (diagonal) matrix of eigen-

values. The elements of the (symmetric) data matrix are either the
covariances:

i,k " o Vit vk,im | (3a)

the standardized covariances:
k" D0, = I g - TN (3p)

or the corrslations:
T,k " Vh, K/ ("vh ‘ °vk) . (3c)

A judgement of the effectiveness of the systems can be made by a calcu-
lation of the residual or left variance, or the percentage reduction,
which can be readily obtained from the eigenvaluaes ) by:

Jj-l.

More details on the mathemstical background can ba found i{n the author's

text (1776). The covariance and the correlation system has been compared 3
in a rr~ent article by Ecsenwanger (1975), and will not be repeated here. 3
In this article it is illustratsd that the percentage reduction varies 1
largely with the particular system which is selected but the residual ;
variance (error) is of the same magnitude for the same number of tarms ]
irrespective of the percentage reduction of the individual system,
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3, EIGENVECTORS OF THE WIND PROFILE, First it should be clarified
that under the term "wind profile'" the structure of the wind velocity
in the first 10 m of the atmosphere 1s not meant. The nomenclature
designates the wind speed or diraetlon as a function of the altitude up .
to about 25 or 30 Km, :

The £irst eigenvectors of the wind direction covariance matrix for i
the altitude range surface to 24 Km are deplcted in Figure 1 for January :
and July at stations representative of four climatic zones. We learn
from inspecting Figure 1 that it would be very difficult to find an
adequate standard function to approximate that particular atructure of
the atmospheric direction profile.

AR et - e

In turn, as displayed in Figure 2, the first eigenvector of the
wind spead from surface to 10 Km altitude range lends itaself readily
for replacement by a standard function, A linear curve f£it would ade-
quately replace the eigenvector for three stations, and the f£itting of
& sacond order curve may be a successful approximation for Albrook.

R e T
i o5

The examination of the eigenvectors f£or the surface to 24 Km wind
speed system follows next, Figure 3 disclosas that at least for some
climatic regimes & standard function such as the Fourier series may be
applicable, This fact is supportad by scrutinizing Figure 4 which
exhibits the wind speed profile for Montgomery. As it is displayed, the
najor eigenvector comprises over 80% of the variance and resembles a
sine wave, Indeed, a Fourler analysis of the first three eigenvectors
revealed that at leaat the first two eigenvectors provide largely one
dominant Fourier term, A comparison of the eigenvector and Fourier
ayatenm appears to be a worthwhile study,
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Figure 1, First Eigenvectors, Wind Direction, Covariance.
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FUNCTIONS FOR THE WIND PROFILE. While empirical
polymomiale provide an optimum of information in one single term, stand-
ard functions have other advantages, One of tham is the homogeneous
mathematical background for different collectives, e.g., data from
different climatic regimes, This homogeneity is beneficial for a classi-
fication of the wind profile into categories (sss Esasenwanger, l974).
The differences of the percentage reductions between individual order
terms at locatlons from typical climatic regimes are not partially or
entirely caused by the diversity of this mathematical background.
Because the present goal is the derivation of one characteristic param-
eter, the homogeneity of the background is of secondary importance
here. Of intereat, however, is the simplicity or the cost savinge
associated with the utilization of standard functions.

Table 1 serves as & basis for the examination of the reduction of

the variance by individual order terme, Threw systems are depicted for
the surface to 25 Kn wind profile at Montgomery (Alabama):
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Vh,i'vh'Ao,i"' 1,1 sin (%+B1 1')+A iein (2()h+ﬁ2 1)+
(5a)

vh,i -co’i-o-c ,u.n (ah+<p2 i)-o-c ain (Zah+ep21) oo
(5b)

and the sigenvector system of equation (3b) which had emerged as the
system with the smallest relidunl vatiance of the thres sigenvector ays-
tems in a separate study.

We learn that one term of the elgenvector system with cocfficiint
131.1 displays the lowest left variance. It should be noticed that AO
or G, is the first coefficient of the Fourler system, which leads to:

ai - Eﬁ E (Vh.i - Vh . Ao,i>2/(h * N) (6a)
ors

o2 = It L (v, - ¢y, )%/ W) . (6b)

Consaquantly the column for one term of the eigenvector system must ba
compared with the columns di and °§' Attention should be called that
an assumptiont

Vit " Vn " Ao,e (5¢)

leads to a residual variance which is quite comparable with the eigen-
vector system, Although the system requires that the mean wind speed

profile Vh is known, the prerequisite is identical, however, with the

one in the eigenvector system. It is self evident that the calculation
of the avarage valua Ao 4 is a trivial task.
L}

A further reduction of the variance is gained by adding terms in
the Fourier or elgenvector series. Because one term of the Fourier
system has two parameters which can be fitted the columns should not
be comparsd equivalently according to their headings. The left variance
should be compared between one term of the Fourier series and three
terms of the elgenvector system, Then the fact that the left variance
is lowest for the empirical polynomials agrees with the expectation,

One additional fact desasrves attention., 1If we are interested in
a eingle~varlite system, the eigenvector aystem can only be based on
Bl L because the other coefficients BJ 1) J & 2, are independent of
’ ! ’
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Bl T Although the Fourier system 18 orthogonal the coefficients can
be relntod (see Elsunwtng.f. 1964y,

' ~ RAMET QURIHER SYSTEM. Bafore a singlesparamater
uyltum othar than bllﬂd on Ao { ¢an be examined let us derive an ana=

lytical expression for the ruplacomant of the vurrent coefficlents of
the Fourier aystem by an approximation . We cast:

AR AL (Ao.,_ + er‘i) + (Al’i + 6“1.1) sin (9 + B ,
+.A51'i) * s ¢))

By summation over h and omission of the terms which become xero we
deduce the following exprassion for the left variance:

2 2 2 2

= - - 2
Var; = By - Ag + Ay W Al(Al + “‘1)(1 cos 28,) + eAl/z

- A:/z + Az(kz + eAz)(l - aos Apz) + aizlz + e (8)

(The subscript i denoting the individual observation time has basn
omitted).

It is eanily recognized that for ¢ » 0 and AR » 0 Eqn. (8) raduces
to the well-knhown formula for the lotc variance (e.3. see Essenwanger,
1976) because the two terms safter A /2 disappear, It may ba reasonable
that A? > ei for the dominant Fourier term. For the other term of the

J
sories it may not hold, and instead of & net decrease of the variance,
an increase may result,

A oritical contribution to the error variance is also made by AB.
It is obvious that for |AB| > n/2 the cosine term becomes negative, and
thus the error contribution of this term may become quite significant
unless the amplitude is small, Inspection of Figure 5 reveals that 51

for the aystem (5b) displays a digtinet maximum for ita frequency dis-
tribution, and a replacement of the “ndividual 51 N by its mean F may
suffice., However, 51 for the system (5a) oxhtbttl a bimodal dtltrtbu-
tion (Figure ). Consequently we must find a characteristic paramatar

which provides a close approximation of bl. Ao and Al' The investigation

is still in progress but tentative results indicate that choosing a
single characteristic such as;

N RS AR i ik §asadin ‘,_4._:;_“;;@ bt
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Y, E “e Vi, 1 (9a)
6!3
V2,0 " E Wy Upyg = V) ' (9b)

may succeed, Then B(y), Ao(y) and Al(y) ete, k and ¥ dencte certain

altitude levels, and « stands for appropriate weights., Tentative results
are deploted in Table 2 which had been obtainad under favorable condi-
tions. We learn that the surface to 25 Km aingls parameter system would
be compaetitive with the eigenvector system, It should be considarad

that an increase of the variance of 25% is not significant at the 95%
level of confideance for the F-test for N ~ 200,

It is amphusized that the replacement by standard functiuns cannot
be generalirzed for the wind profile from all altitude ranges. For
exampla, if our goal is the derivation of a single characteristic for
the surfave to 15 Km range, probably tha elgenvestor system is tha best
approach, The possibilities of a replacement by standard functions must
be examined in every individual case.

6, CONCLUSIONS. A comparison was made betwean curve fitting
systems based on empirical polynomials (L.e. eigenvectors) and standard
functions, It was disclosed that the eigenvector system offers an
optimum reduction of the variance with a minimum number of cosfficients
as expected from theory, It was Lllustrated, however, that under certain
conditions standard functions may perform quite wall, and thess are
simpler and more economical to compute than eigenvector functions.
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INDUCTION ON A MARKOV CHAIN
Richard M. Brugger

RAM Aseessment Diviaion
Product Assurance Directorate
U. 8. Army Armament Coumand
Roek leland, Illinois

ABSTRACT., Through the use of Markov chain methods, expressions for Mean
Rounds Between Failure (MRBF) ware found for a class of weapon systems. The
method led to an inductive datermination of an expreasion for the general case,

Following the derivation of the general MRBF expression, expressions for
realiability are obtained (but not a general exprmssion).

%. INTRODUCTION, The problems treated in this paper relate to a1 ship~-
board weapon system of the following type, Some numbar (a variable) of gun
mounts are connacted in parallel. This parallel network ims then connected in
saries with a fire control system. Each gun mount has the same number of guns

(for simplicity, we will assume one gun per mount; the results are easily ex-
tended to some other number of guns per mount).

QL ™ Prob (given mount functions successfully) = (1)
42 " vrob (fire control functions successfully) (2)
pi.l-qigi-llau (3)

Once a mount fails, it is considered inoperative thereafter,

Nota that we are assuming that esch gun mount has the same success prob=
ability., This assumption aimplifies the Markov chain work somewhat, but,
as we will show later, even this simplifying assumption doesn't serve much
purposa in the end.

In thie particular application, tha interest was focused only on the be-
havior of the gun mounts and fire control., We are thevefore not concerned
with failures of other parts of the system, such as the guns ot the ammuni~
tion, and will, for convenience, assume that these function perfectly.

s g%gﬂ ROUNDS BETWEEN FAILURE (MRBF), In this application, MRBF will
be defined as the axpacted sumbet of rounda, successful and unsuccessful,
attempted up to and including the firet msalvo where either none of the
mounts function, the fire control does not function, or both eventa occur.
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Tor onae mount, it is apparent that MRBF follows a geometric diptri-
bution. The probability of a salvo successfully occurring 1s 9,9, - Ry
. tha properties of the geometric distribution, then

MRBF = 1/(1 = q,q,) o (4)

For two mounts, a Markov chain was constructed with the following
state definitionst

80 = evarything working
81 = one mount out, fire control working
82 = system not working

The transition matrix was as follows!:

80 81 82

80 qfq2 2p,q;d0, 1 = I left elements
Bl —— 9, l =11 lelt elemente
g2 1 —— —

In the above matrix, the expression "left elements' refers to matrix
slements in ths same row but in columns to the left, One would ordinarily, and
correctly, think that in row 82 the one should be in column S2 rather than
80, thereby reflecting the fact that state §2 is an absorbing state. This
one is shifted to 80, however, to change the problem into one that can be
treated as a first passage situation,

We will use column 82 to bring sbout degenaracy, so we are not concerned
about what the actual values in this column turn out to be., Bolving therufore,
for the steady state probabilities in terms of the steady state probability
for stata 82 (denoted P(82)), we have

P(80) = I—.—éﬁgp(sa) (3
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2Py q , .
P8) = et P a (6)

P(81) = P(82) Y

wor = SE{E8L . RIEM (Y
. B
199,

For three mounts, the transition matrix becomes more complicated, so
the simplified Markov chain method [1,2] was used, The states were defined

in terms of situations, rather than on a salvo=by=-sulvo basls, The states
were

80 = pystem working

81 = 1 mount falled in salvo of first failure
B2 = 2 mounts falled in salve of first fallure
83 = gystem not working

The transition matrix veoomes!

80 81 g2 g3

3p. a2q 3p2q,q
80 w—— ..ljl.ﬁ ..L,l_é l =1 lef't elements
l"quQ l-q’lqﬁ'




Going through the steps required for solution, as described in 1,2 ,
we obtain : ' '

| : (9
MREF = 13:5;357

Using the simplified Markov chain method for 4,5 and & mounts, the pattern
: (i
NIRBF‘:L " -(-——-—Tl_qlqa

continued, where 1 is the nunber cof mounts,

8ince only the top row of the transitional matrix in the simplified
form has any new information as the number of mounts increase, and since
the expscted length of the various states (in the simplified Markov chain
senne) was determined as the numbar of mounts increased, induction was
considerad,

By considering the result true for K-l and considering what the
atruature of the top row of tha transicion matrix would be for & )
it was seen that

K=l
2 ($eyal (kel)
MABF = -J&;- + q inl T (11)
" T,

QED.
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After obtaining this general solution, further relection was given to the
problem. Bacauae of the nature of the simplified Markov chain transition
matrix for this proble- (whereby all of the information of interest appear-
ed along the top row) i was seen that a direct algebraic induction solution,
without any use of Markov chains at all, was possible.

Finally, it was seen that the problem was actually much simpler; aven alge-
braic induction was not nacessary. This was determined as follows., Let us
imagine that an observer is statloned by easch mount, and that each observer
will remain by his mount for an infinite length of time (or for an infinite
number of trials from the situation "everything working" to "system down").
Each observer records how many rounds are fired from his mount until his
system (the fire control and his mount) breaks down. His syscem is equival~
ent to a one mount system, as 1s each of the other chservers, so, over the
long run, the average number of rounds between failure for his system will
ba the same as the MRBF for one mount. For several mounts, then, the MRBF
for the aystem is just equal to the sum of the MRBF's for individual mounts
(whareby our earlier simplifying assumption that all mounts have the same
MRBF is seen to be unnecessary)., VWhile the common fire control suggests Jde-
pendency, the dependency exists only for each trial from "everything working"
to "system down'; it does not exist for the system MRBF,

From the above, it is seen that almost no mathematics was necessary for
gsolution. At the same time, the mathematics bears out the result obtained
through the purely intuitive approach just described.

2. RELIABILITY. For this application, the reliability for an N round
mission will be defined as the probability that a mission of N successful
rounds will be accomplished.

For ons mount, we have & simple geometric distribution, and the N round
reliability can be expressed as

)N (12)

RN = (qlq?

For two mounts, let k_  be the number of salvos that would be required
if the Nth successful round were fired in the kéth salvo and no breakdowns
occurred in the first ko'l gsalvos. If N is even, kO- N/2. 1f N ie odd,

ko ® (N41)/2. 1
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-After some Investigation into how the problem could best be alge-
breically treated, it was found that the best approanch would be ons vhere-
i by mny necesgary summations would be indexed by the number of successful
! fire c¢ontrol salvos. Thus, for two mounts, N even, we have

A f N .
: Ik N k
: Re = qh0.0 + I 2p,qyq (13)
! N 17 Keko+1 1t1e2
{ which, for 4, < 1, is found to ba
glotl |
N Kk, N *2 - 42 b
Qep° * epe T e ' )
For two mounte, N odd, we have
N
N+l k N ko Nk
Ry #q, q.,° + 2piq,a.” + I 2p,q,q (15)
Nt 1% ke 41 L L2
which, for 4 < 1, ig found to be
gfotl | 1
N+1 ko N k N 2 T oRp

For three mounts, the problem becomes slightiy more complicated. Let us
make the following definitions for k, .

It
N =0 module 3, k, = N/3 (17)
N =1 modulo 3, k, = (N+2)/3 (18)
; N =2 modwlo 3, k, = (N+1)/3 (19)

The following probahility of mutuvally exclusive events are defined,

1. P(0) is the probability that the N'th successful round occurs on
the kjth salvo.

2. P(OA) 18 the probability that the N'th successful round occurs after
the kjth salve, but no mount failures occur in the first (k,=1) malvos.

3, P(1) is the probability that one mount failure oceccurs in the first

i (kg=l) salvos, no more failures occur, and the N'th successful round occurs
after the klth salvo.

182




-

salvo.,

Then

When N =

When N = )

When N = 2

When N = O

Wien N = 1

Ry = P(0) + P(oA) + P(1) + P(2)
modulo 3

oo = 3
modulo 3

p(o) = Qi ™23l 03
modulo 3

N-2 (N+1)/3

P(0) = q; “q, 2

3 ,
(a7 + 3p,9

modulo 3

qf'3q;2:3)/3{(3pquq2)(l - pd)q,

P(0A) =
2.2
+ (3piq,q.)q47)

N-1 (N+3)/2 2
= 3pq, 9 (1 - py *+ P99,

modulo 3

P(OA) = 0O

L, P(2) is the probability that two mount failures occur, at least one
beéfore the kith salvo, and the N'th successful round occurs after kith

(23)
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When N = 2 modulo 3

P(OA) = qﬁ'aq;N'a)/3[(Bpfqlqa)qlqaj

. 3qlqém+u)/3 2 (26)

Let S5(N/2) be the smallest interger larger than or equal to N/2 .

Then
8(n/2) s(n/2)
N-2k 2k k Ne2k+l 2k k
P(l) = I 3p a4,  a; 4 L 3p,q a7 a5 (27)
yag +1  + L 19 Kk +1 141 1 42°
kim?g k&( ﬁ+l

If k,+1 = N/2 the above generalizes to

k, +1 S(N/2)+1
30, (g + o) 9% - G5 ;
Pl q'l ql 1 q'2 (28> 1

for q, < . It (kg+l) > N/2, P(1) does not axist (the case for N small).

N :

N k ~

P(2) = & 3p Q4q (29) :
k4L 1°x%1%2

e disb

vhere C, indicates the number of ways two numbers can &dd up to N-k
given tlie mgximgn of these two numbers is less than k. 3
For s8(N/2)

C, = N=k+1 (30) .
For ko+l = k & §(N/2) - L

O, = (<N + 3k = 1) (31) ;
o |
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Then
N ,
2 N Kk
) 3p (N - k + 1)q.q
xus(N/2) * 17e
x 3p8g" ¢ : (N=ka=i+2)ghy
2 s(n/2) 2 (32)
N N
2N X X
wm 3p7qy { I (N+2)q, - E (k+1lg,}.
177 s/2) 2 g(w/e) 2

Treating the right hand term within the brackets as the sum of derivatives
(veing equal to a derivaetive of a sum) the above becomes, for q, < 1

8(N/2) Nl
2 N i - 3
3p;q, {(N+2) T4,

N K 8(N/2)=1 K
- [ 2 (k+ g, - L (k + 1)q, ]}
0 0

(N/z) N+l

. 3’1ql (s 2) = T-q, (33)

1= (N + 2)q§*1+ (N + 1)qN+2

- e ——-

(1~ q2)2

1 - (s(n/2) + l)qg(N/'?) + 8(N/2)q S(N/2)+l .
i (l - q2)2 '
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’
¢ In & gimilsr manner, we find
5 S(N/2)=1
| 2 N k
| I (=N+3ke-2)3pqaq,
: k°+1
% | - k¥l | S(1/2)
' - -2
- Bplql( (N + 4) T,
| 1= (8v/2) + 1)SW2) 4 g(n/a)gd W2
+ 3{ = 5 e (34)
( 1= QQ)
- Ko+l Kk, +2
. 1= (k,+ 2)q20 + (ko * l)qeo )
- - .
(1 =qp,)
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MARKOV AND PATH DEPENDENT PROCESSES
APPLIED TO CONTINUOUS SAMPLING
PLANS IN TANDEM

David 1.. Atp
Naval Weapons Caonter
v China Lake, California

i ABSTRACT. A continuous sampling schame, consisting of two generic

: Continuous Sampling Plans (CSP) in saries, is analyzed, This serial
arrangement is used for the attribute sampling for two different indepen-
dent characteristics of items in a given production run; the output from
the first plan forms the input to the second. Using standard one dimen-
sional Markov Chain (MC) models for the peneric CSP's, the serial CSP
model is shown to be equivalent to a two dimensional. (or second order) MC

wvherain the state of the second component is directly dependent on that of
the first,

< . !
it &, T

The ergodic properties of the marginal distribution of the second
component are analyzed by using 1) the ergodic theorem applied to matrix
valued random variables, 2) a nonstationary MC approximation to a path
dapendent process, and 3) direct products of transition matrices constrained
by the dependence mentioned above. In the latter two approches, the MC'e
are shown to be aperiodic and (strongly) ergodic; either one can be used
to show convaergence of the path dependent process., Taking the appropriate
limits, as the production run becomes infinite, it is proven that the

limiting probabilities for the second component are independent of those
of the first,

i

Using direct products, the analysis is extended to the case of thres

' or more CSP's in tandem. Under the additional assumption of a separable
initial probability vector and for n 3 2 the direct product MC, which is
ergodic and stationary, is shown to be equivslent to a finite mequence of
n MC's, 1In this sequence, the first MC is ergodic and stationary; the re-
maining MC's are (strongly) ergodic and nonetationary. Comparisons are

i alsoc made with other naturally arising multicharacteristic sampling plans.

1.0 INTRODUCTION.

i
b 1.1 Continuous Sampling Plans. Given & production line of items, a (one
: characteristic) Continuous Sampling Plan (C8P) conaists of two or more

) phases of attribute sampling for an item characteristic diractly from

the line. In at least one phaso, tha sampling frequency is zero with an
exit occurring only sftor a fixed number of itema ara found to be conse-
cutively nondefactive (screening phase). The phases ara alwaya connected
is such a way that each of them is "positive recurrent" for an (abstract)
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infinite production run, Moreover, the number of phases is finite and
an exit from any one of them takes place after a finite number of produc-
tion units with probability one,

C5P's are modelled by Markov Chains (MC) which, because of the phase
structuring, are finite, aperiodic, and irreducible, The plans and their
MC modals are discussed at length in References 6,2 and 6.5, The simplest
of the CSP's, CSP-1, along with its usual MC model, is described in
Chapter 2.

1.2 Origin of Tandem CSP's. In the past, CSP-1 has been used in a serial
manner to sample for eight different characteristics per production unit.
In practice, the characteristics were sampled for at succeseive stations
along the production line., It is this type of sampling that is generalized
and modelled in Chapter 2 and further analyzed in the succeeding chapters.

1.3 Contents of Paper. In Chapter 2, after describing CSP-1 and its MC
model, Semi Markov Chains (SMC) are introduced and utilized to simplify
the MC model in two ways: the "classical" way, driven by a particular
functional, and a second way, motivated by the serial sampling plan and
the idea of a controlled Markov Chain (MC). Such a SMC simplification of ;
a MC is called SMC reduction (see Refarence 6.2). The daescription of 3%
b
3

(2)-serial C8P=1 1is then given followed by a second order MC ((2)-MC)
model for it. The (2)=MC model is based on the assumption of independent
characteristics.

In Chapter 3. the second SMC reduction is used in developing two k
similar approaches to the simplifiecation of the (2)-MC model. The major G
connections between the resulting models are also brought out. The second, ;
path dependent model is approximated by a strongly ergodic nonstationary
MC. In Reference 6,2, it is erreneously stated that this approximation
is equivalent to the (2)-MC. Thus, one of the major purposes of Chapter 3
is tu clarify the assumptions made which make the nonstationary MC differ
trom the (2)-MC.

In Chapter 4, the longest of the chapters, a third method is given 3
which utilizes the concept of the direct product of matrices., For n>2, !
(n)-serial CSP~1 is also handled by the same techniques and tha CSP=-l
restristion is eventually dropped. For (n)=-serial CSP-l, it {8 also
shown that its direct product MC, which is stationary and ergodic, can be b
separated into n MC's. The first of these MC's 1s also stationary (and :
ergodic) in contrast to the remaining ones which are nonstationary (and
strongly ergodic). PFurthermore, the latter n=-1 nonstationary MC's exhibit
structures which are aeesentially different from the one exhibited by the
nongtationary MC in Cuapter 3. Of primary intereat is the marginal Average n
Fraction Inspected (AFI) functional for the last plan in tandem. This '
functional {s comparad to the one which results from use of the plan by
itself, The treatment of other reasonahle nonserial multicharacteristic
sampling plans concludes the chapter., Chapter 4 contains all the major
resulta in the most satisfactory form,
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Chapter S concludes the paper by summing up the major conclusions
and theotems as well ap suggesting some further poseibilities for and
modifications uf multlcharacteristic sampling plans.

1.4 Glessary. In References 6.1, 6.2, and 6.3, the clearance number, which
characterizea the screening phase of CSP~1, is denoted by the capital

letter I. However, in this paper, "I" might ba confused with the identity

matrix and thus small 1 will be used instead for the clearance number,

Henceforth, references will be denoted by numbers in brackets (e.g.,
"Refarences 6.2 and 6.3" will be written as [6,2,6.3]. Common abbrevia-
tions and notations are given below.

rxn = ¢ columns and m rows
[a.e.] = almost everywhere
pv = probability vector (non-negative entries with sum = 1)
CSP = Continuous Sampling Plan
FI(N) = Fraction Inspected out of N units
AFI(N) = Average of FI(N).
AFIn(») = Marginal AFI(w) for the nth plan in a (n)-serial CSP
MC = Markov Chain; SMC = Semi Markov Chain
M(+) = MC procesa; X(*) = SMC process

A @ B = Diract product of the two matrices

A;, = Transition matrix of (n)-serial CSP-1

1.8 Acknowledgment. Mrs, Leah K. Jones deserves full credit for the
excellent and expeditious typing of the paper as well as for the drafting
of some complicated diagrams and the proper rendering of special technical
symbols.

2.0 BACKGROUND.

2.1 C8P=1, 'This sampling plan, the simplest of its type, is characterized
by one varianble and two parameters. The variable, p, 1w the probability

of f£inding a defectivo item (characteristic) under the assumption that the
product flow forms a Dernoulli process. The two parameters are i, the
clearance numbar raequired to exit from the screening phase (abbr. sc), and
£, the sampling fraquency to use durlng the unlimited sampling phasa (abbr.
uls). Thus, when neceseary for clarity, a particular CSP=1 will be written
explicitly as C8P-1[p; 1,f]. The black box description of and the MC model
for the plan appear in Figures 1 and 2, respectively,
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Figure 1
Block Diagram of CSP-1{p; 1,f)

start y .
<>‘15t>‘ ingpact ) 1 con;ecutive \ sample at

>

100% units defect free freq., {

if defect is found

First box = screening phase (sc)
Second hox = unlimited sampling phase (uls)

Figure 2
Markov Chain Model of CSP-1l(p; 1,f)
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[ I |

Bampling frequency; v = l=f

Hj = MC state of sc, 0 £ ] 5 i~1
SN = Noninspection MC state of uls
8I = Inspection MC state of uls
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2.2 Semi Markov Chaihs. Semi Markov Chuins (SMC) can be usaed to simplify
CSP's and, specifically, CSP-1., Below, a brief gxposition of SMC's 1is
given, PFor further details, see [6.2, Appendix of 6.3, or 6.6].

For discrete (and integral) t » 0, let X(t) be a @iscrete) stochastic
process. Then we have

Definition 1. X(t) is a finite Bemi Markov Chain iff its state space
is finite and and following relationship holda

ProbY(n), W(n)|¥(um), Wm); 0 < n £ n=1]
= Prob[Y¥(n), W(n)|¥(n-1), W(n=1))

where Y(m+l) = X(tme1)y T(mbl) = Wimkl)-W(m) is the time of sojourn in state
Y(m) from its entrance until its exit to state Y(m+l), t(m+) 18 a parti-
cular realization of the random variable W(m+l) which in turn ia the total
time to (m+1)6t transition, and Y(m) % Y(m+l) for all m.

For further reference, we have

s F il dnh gl

Definition 2. Let &£, k be in the atate space of X(+). Then

"a. The (defective) pdf of the time to transition from atate £ to state
k is

Qg,k(t) = Prob(X(t) = ki X(L') = 2, t > ¢'> 0[X(0) = 4],

oy ot

for 2 % k and i8 otherwise zero.

~ b. The probability of starting in state % at time zero and being in
state k at time t is given by ,

Py, k(t) = Prob(X(r) = k|X(0) = 23,

. In Definition 1, the prrzeas Y(+) is a MC called the embedded MC of the
SMC., Letting Hp be ths Heaviside sequence, the transition matrix for this MC
ia

Py

[HO*QQ .k(-) ]

where the asterisk denotes the operation of convolution. If in Definition 2,
there should exist at least one state k such that Q, 4(*) is not identically
garo, then self transitions are possible without bakﬂg recorded by the SMC
apparatus, In this case, the concept of a Markov Renewal Process (MRP)

must be used. Referring to Definition 1, the MRP would be the process (X(:),
W(:)). In the rest of the papor, wa will be dealing with apericdic, irre~
ducible, and stationary SMC's. Tha dafinitions of all these concepts parallel
those for MC's, For further information on MRP's, types of S8MC's and their _
relationships with their embedded MC's, see [6.2, 6.3, or 6.7]. q

s o e e i
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‘We finish this section by stating two theorems needed later on.

Theorem 1. Given the SMC X(:), we have

Py k() = E: Qg,3 "By, k() + (8 p)dn(e)
| 3 }

where Py, x(+) and Qq,4(:) are defined in Definition 1, 6y, is the
Kronecker delta, and -

Jk(cs a How(sg ~ ZQk,.)(t)
for 8,(t) = 8p,¢ g
Procof. See [6.2, 6.6, or 6.7].,

Theorem 2. OGiven the SMC X(:), the following limit holdas.

exhik
¢ Lim Pyg(t) » === !
:ﬂq tomn 8 3
; ; ;
: - i
- ﬁ wliere ¢ = the unique eigsnvector with eigenvalue 1 for the embedded MC and 3
; Uk ® the mean time of sojourn in state k. .%
Proof, Bee [6.2, 6.6, or 6.7]. g
2.3 Bimplification of CSP-1. The firat simplificntion is drivaen by the ¥
Fraction Inepection (FI) functional which is given in 1
1
Definition 3. For the model of CS5P=1 appearing in Figure 2, che
Fraction Inspected (FI) functional is *
N ; )
FI(N) = 1 'yN' Z C(ula)(t)
tw0 y
In the equation, N = the total numbar of units which have passed tha in- ?
spection atation in real time, v = 1=f, and b
1, if X(t) 1is in uls k
Ceulsy(t) = i
(uls) 0, otherwise . é

Taking the conditional average of FI(N) gives a function defined in
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';q ' Definition 4. The Averape Fraction Inspected (AFI), for the first N
! units and starting in either MC state HO or in any state under equilibrium

?' eonditions is :
' . AFI(N) = E[FI(N)|M(0) = HO] |
£ 3
; = Eo[FI(N)], also ;
£ where M(., 18 the MC process, E[.] the expectation operator, and & the long %
i run probability vector (pv). . :
% Concerning the firet simpliflcation of CSP-l, we have 3
§
: Theorem 3. Letting sc = 1 and uls =2 (see Figure 2), ve can construct
the following SMC whose states are defined in terms of the 2 transform
{6.1, 6.2, or 6.11].
States: (1, Q2(2)) and (2, Qz3(z))
x ' R 1¢p. ” s
.- where 2) =820 4 ) e L,y . pgt
Q2(2) 2L (2190 21 228 ° ’

6§ = fp, and B = 1§,

Proof. See [6.2].

e Mu':-a—-_-‘_g‘-..

Corollaxry 1. The unlimited sampling phase of CSP=1 can be reduced to
a MC state Si with a geometric pdf.

N o S TV ;

Proof. From Theorem 3, the,transform of the function 621(1) is a
(nondefective) pdf which can be written (in the time domain) as

Qsy,molt) = 88t~1

In the above equation, HO is used since the application of this Corollary 3
will be to the MC model.

. T

Corollary 2. Starting in etate 1 at time zero, the FI(N) functional
in Definition 3 has a limit as N approaches infinity given by .

Lim FI(N) = levay {a.e.]
N+

‘w AFI (u)

Proof. The first equality follows from Theorem 2 applied to the SMC ,
constructed in Theorem 3 and the ergodic theorem for functionals defined oo
(or,_in this case, definable) on SMC's. The second equality follows from : %
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Definition 4 and the facts that "M(0) = HO" is equivalent to "X(0) = 1"
and E[Ca(t)|X(0) = 1] = Pja(t).

The second eimplification will be used in Chapter 3,

Theorem 4, From the MC model of CS5P-1, a SMC can be constructed with
the following states (again in terms of the z transform)

States: (a, ng(l)) and (b, Qpa(s))
wvhere
Qea(2) Qaale)

» - _ﬂ_ d 5 -
Q'b(l) an le(z) 1"63@(3)'665(2)

Z-p

The tranafer functions for the intermediate states ¢ and d are
- A i=1
Qoq(z) = (5}) 1=1 and §cq(z) = (ﬁ;) (1- (%) )

Proof. Let a = HO, ¢ = {?j y for 1 £ &£ 1«1, and d = S1, Then a and
d have geometric pdf's and are thus (trivial) SMC states. From [6.2], ¢
is a SMC state with the given tranaform, Using a routine combinatorial
argument, we have (dropping the argument z)

Wa = Qed ' Oda Z (Qac‘Qca)J}
in0

ThTCh reduces to the given form by summation of a geometric series for
z >1I

2,4 MC Model for (2)-Serial CSP-1. We consider two (different) CSP-1's in
tandem: (CSP-1 ﬁ:k; ik. fk] with MC and SMC states {ij, Sik} and
{lk, bk}. respectively.

The (2)-MC model of (2)-serial CSP-1 is bdsed on the assumption that
the two item characteristics being sampled for are independent. Following
the practical case discussed in Chapter 1, two item characteristice are
sampled for at two succassive stations along a production line, according
to two (different) CSP-l types. If an item is rejectaed bacause of a de-
fective first characterisgtic, then tha second characteristic is not sampled
for. Thus a transition to HOl occurs in the first plan but no transition
at all occurs in the second plan for the given operational time increment
which the item represents. liowever, 1f the item passes muster for the
firat characteristic (i{.e., the item is inspected and found to ba nonde~
fective in the 1st characteristic or, because of f3, is not inspected),

a transition takes place in the firat plan to a state other than HOl (or
81) and the item moves on to the second station. Jhus, in this latter
situation, a transition takes place in both MC's fnr the specific
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operational time increment generated by the unit, We translate this view-
point into the (2)~MC model given in Figure 3,

_ _ Figure 3 .
Second Order Markov Chain Model. for (2)-86r1al C8P=1

em

E States! ‘{(’kl, 12),, (’k:l, k2”)., m.gz},
for 0 ¢ kj € 431, § = 1,2}

) : _

; Transitions: ((k3)+1 may be 13, J = 1,2)

E Stata 'Stgtu Probability
(k1, k2) ((k1)+1, (k2)+1) q;49,

' (11, k2) \ ; (11, (k2)+1) 8142

'. (k1, 12) ' ((k1)+1, 12) q182

. (11, 12) (11, 12) 8182
(k1, k2) ((kl)+1, 0) q;P,
(11. kZ) . (11. 0) : Blpz
(k1, 12) ; i ((k1)+1, 0) Q.8
(11, 12) (ﬂ-o 0) 3162

(klg x) (oi x) . pl
(11, x) J g (0, x) 6,
(x = 42 or k2).

The result is & rather complicated 2 dimensional lattice. The re-
maining chapters reduce the study of this model and, more generally, similar
models for (n)-merial CSP-1's and functionals defined on them to a manageable
syscematic analysis with various degrees of success. To help in this analysis,
we fix aome more ideas in two more definitions before leaving Chapter 2.

Definition 5. A (n)-seriml plan is the same as a (n)-serial CSP and
consists of CSP's arranged in tandem such that the output of the jth plan
is the input to the (j+1)st plan, 1 £ § £ n-l, For a given pperational time
increment given by the movement of a production unit through the sampling
stations, .a transition takes place in the (j+1)st plan only if no defects
are found in tha preceding j plans. Moraover, if a defect is found at the
jth station, no transitions taeke place in the consecutive plans aftec j.
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However, the interpretation of "virtual transition" for "no transition" will
also be used when convenilent to do so., 1If only a particular type of CSP is
used, the scrial plan will be called a (n)-scrial CSP-"type''. If the CSP's

gl | are mixed types, the plan will generally be written out: (CSP<type(l))== +:. —
« I (C8P-typa(n)). o _ B o
g % .o Dafinition 6. A multicharactaristis plan (MCP) will beiuqddiqu a genevic

term while & non-CSP MCP will be called a variant MCP,

3.0 TWO APPROACHES TO (2)~-SERIAL CSP-1, The two approaches are given in
Sections 3.1 and 3.2, The connections between them are given in Section 3.3,

In addition, a and b are :hg 8MC states appearing in Theorem 4 for the first
plan, Az is the usual transition matrix for the second plan used alone,
! end [2 is the tdentity matrix of rank 1.

34 V 3,1 Aﬁerage Transition Matrix. Given the (2)=-MC model for (2)~garial CSP-1,
1 ‘ we first define the matrix valued characteristic functional in

,@ﬂ Definition 7. Let 1) w be a realization of the process (X(t), Ma(t)),
vhere X(+) is the SMC variable for tha first plan and Ms(+) 1is the MC vari-
o able for the second plan and 2) Proje(w) be the projection to the first

i component at time t. Then the matrix valued characteristic functional is

fl

Az» if Projefw) = b

Celw) =
[2, 1f Proj (w) = a

Using tha idea of a controlled MC (see [6.12)) ond Definition 7, we can
prove

Theurem 5. As N approaches infinity,

& f: Cc W »ay I, +ap A, [ae.]
© te]
Proof. We can break the matrix valued random variable up as

Co @ = atw) I, + b A,

The functionals ap(:) and be(:) have the obvious definitions: s (u) = 0 or
1 1£f Projy (w) = b or s, respectively and be(w) = 1-az(w). Then the above
average sum can be similarly decomposed. The theorem then follows from the
definition of the (2)-MC model given in Figure 3, the SMC reduction of €SP~}
in Theorem 4, and the ergodic theorem for functionals defined on SMC's.,
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Using Theorem 5, an average operator can be assoclated with the
sacond plan in ‘ ‘

Definition 8. Given the RHS of the limit in Theorem 5, the Average
Tranaition Matrix for the second plan is ' o

Fz ."".";a.lz +a, Ay

Cledxrly, for the second plan, the expression for K; oan bo looked

upon as stating that,-in the long run, Ig is the (virtual) "transition
matrin" (100)as% of the time while Ay is the appropriate matrix for the
remaining (1oo§abz of the time. To elaborate somewhat, Ig can be intarpreted
as the "Stop" matrix, That is, when Iz is employed, no transitions taka
place as far as production unit time 4is concerned., A possibly better inter-
pratation 18 to consider (virtual) transitions as taking place according to
the identity materix but to defina the relevant functionals only for transi=-
tions which occur according to Az. With this latter viewpoint, we then have
a path dependent nonstationary process (see Section 3.2).

Given K&. we have

Theorem 8.
k.
Lim -
un (K,)" = L,
whare L is the uasual long run matrix for the second plan. That is, the
ecolumns %ra all identically equal to tha long run probabllity vector (pv)
8
Procf.
L S A 3 pk=3 '
(KZ) '.'L(J)“a (I-z‘Az) A, W
' h|
However,
k
tim A, =L : (2)
o 2 2

Therafore, Eq. (2) and summability theofy [6.9] imply that the limit exists
tor Eq. (1) and is L,

Theorem Bnnhown that the use of the average matrix gives tha mame long:
run results that use of Az does. Thus, using thie first approach results
in a marginal API(®) which is the same as that which would be obtained if

the second plan were to be used by itmelf,
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3.2 Path Depsndent Model, The modal is given by the matrices in

Definition 9, The path dependent matrices for (2)-serial CSP-1 is

t
Act o) = ]T (‘k(‘“)l'z + b (w) Ay )
' kel )

where ap(:) and bi(:) are defined in the proof of Theorem 5 and tlie matrices
are dafined in Section 3.0,

Let the conditional expectations E[.|X;(0) = &) and E[«|al)" cperate
on thB above matrices to yiald m.trine:'Al(e) and A, (t), reapactively. Alse
let ¢, = (1,0,¢¢+,0), i; times, and be an arbitrary pv with i entries.
Than, a little reflection shows thac the (2)-MC model with inltial pv =

(a1 » Yol or [gy, Y3 is equivalent to using A.(t) or Au(t), respactively,
with initial PV ™ Yoo

Using the equality "by(:) = l-ay(+)", we can rewrite the matrices in
Definition 9 as

t
Aceiod = TT (st (Ta= Az) +A2) (A%

Multiplying the RHS of Eq. (A3) out, we get
t
Altsw) = (ajap +===-at) (Iz - Az)

o () (1 AT
Foammt (j; o) (1= Ay) A7 + A (52

In Eq. (B3), the ayguments of the ajy's have been dropped for notational
convenience and "] " is the restricted summation obtained by requiring that
31 < Yz <=-m< Jy

From Eq. (B3), a recursive scheme can be developed, Tor a (complex)
polynomial of degres mn with roots Ty (§ =1 ton), let By(ry,=~=,r,) be the

kth symmetric function of the roots™ (aseociated with the variable of power
n-k). For eimplification in using Eq. (B3), daefine

Dig(w) # Sy (ay,===yap). .

St

*al is SMC notation for g,.

198




o arstpg .
Y g, INEIIEE Y4000 701 A e S 8 g e e et e g g

B PERMTRLyar iEge

a5 TSRS o I - N

Thus, for example,

D§ ~ 1, D?-Zaj.andbg- ” 8y
8ince ayx(w) = 0 ov 1, we can conslder the RHS of Eq., (B3) as a random matrix
polynomial over the binary field., Using.the symmetric function, we have

Theorem 9. With the special random symmetrie functions defined above,

we have a racursive relationship between the coefficients of A(n+l;w) and.
A(niw) where we treat ([;-A,) a8 "1" and A, as the polynomial indeterminate.

Broof. The recursion is obtained by expressing A(ntiiuw) as A(O,nfu):
A(n,n*13u) and equating coefficients, Explicitly, the recursion is given by

Dl'oﬂ'l w i

putl n
Datl " #nbl * OO

n;*l “ Df * #pgy Dfugy L Sk £

In particular,
/
Dy =) 41832 === 84

. Eq. (B3) 4s more useful for calculation of Eq. (A3) because of

Proposition 1.

Eflj.xljz°'-"ljilx(0) ~ a)

" Paald))PaaUgmdp) o= By (gt gu).
" Proof., S8ince state a has a ;oomctric pdf,

Paa(d) = Prob[M,;(j) = HO[M;(0) = HO]
where M;(:) is the MC process for plan 1.

Corollary 1. For the first plan, letting E[-|X(0) = a] = E,[+], we have
Ea[‘laa"‘"'.n] = p?

’-‘-[2; ‘j] - ;Pu(j)

'Proof. Proposition 1 and definitions,
Gorollary 2. With tha sama conditions as Corollary 1,
Eg[DI*1] = 1

Eg[DFT2] = By, (nb1) + By (D]

By D) » By (0] + B, B, agsy I0}1) (©3)
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Proof. Theorem 9 and definitions.
Bq. (C3) is, in genafal. tadioué to evaluate. As this equation stands,

the probability of the union of k overlapping events would have to ba evalua-
tad, Thus we try an approximation such that Eq, (C3') holds:

By (O Ealanss|oR]) = EalDR] Balanea] (3"
However, Eq. (035) is eguivalent to the assumption that the random matrices

A(J,J+1;w) are independent. Procoading with this simplifying assumption, we
get the following nonstationary MC.{A (k) ) , where

A = (Pay 0]y + Pap(kA2) (03)

Concerning this MC, wa have

Theorem 10, Tha nonstationary MC whose matrices ara given by Eq. (D3)
is strongly ergodic. Its limit is expressed by

n
Lim EA'(R) - L,
n -

vhere the strong convergence is in the sense oflthe norm supremum (or any
norm equivalent to it in finite dimensional Euclidaan space).

Proof. Each of the matrices has the unique eigenvector g, with eigen=

valua 1. From {6.10] and Theorem 8, the nonstationary MC is strongly ergodie
with the above limit since

Lin Aw=K,,

whete the limit is taken with respect to one of tha above norma.

The nbnncationlry MC in Theorsm 10 is the approximation which is
erroneously stated to be equivalent to the (2)«MC with the expectation
operator Eq[+]. To get some idea of the relationship between EalACk,w))
and A (1,k), we prove _

Proposition 2. Pya(j) is a monotonically non-decressing function.

Proof. Recalling the stochastic sequence W(:) from Dafinition 1 and
letting T4y be a sojourn time in a until exit to b, we have

8P, (n) = P (ndl) = P, (n)

= ~Quy(n) + Z(Nwj (a) = n]
j=

~P{W, (8) + Tgp, = 1) (1)

200

[ F R

b

IERETIDN ST WP S

NET RIS P TS NPy

b .




-

o e o THEY -
pall
4

Y TG e

R

3

T

But the expression inside the summation sign in Eq, (1) is

~P(Wy(a) + Typ = n and Tap™ 0] s 0 ‘ (2)
From (1) and (2), the Proposition follows.

CGrbglgrx.S. The coafficiente of the nonstationary MC are all less
than or edqual to the corrasponding ones of the sxpected value of the path
dependent modal,

Proof. Abbreviating Paa(') by P(+), Proposition 2 shows that

PUPPUR) === B(Jg) & PUI1DP(3231) =P (Jg=Ignl)

Each side is a general term of the £v0 models, the LHS coming from the non=
stationary MC model and the RHB8 coming from the path dependent one,

3.3 Connections. The transition matrix Kz in Sectilon 3.1 is clearly equal to

strong=14m A' (k).
k

The connection between the nonstationary MC and the average of the path de-
pendent model has alraady bean examined; tha former 1ls obtained from the
latter upon assuming the independence of tha one stap random matrices. Non=
stationary MC's also arise in Chapter 4 but they are more related to the

SMC reduction in Theorem 1 than to the reduction given in Theorem 2.

4.0 DIRECT PRODUCTS AND MULTICHARACTERISTIC PLANS. 1In this chapter f, will
denote the transition matrix of jhe kth C8P in & serlial plan. The plan
variablas and parameters will also be indexed in the same manner (e.g., Dy,
Qu» fx, and iy for CSP-1). Ik will denote the identity matrix of rank 1.
We will use properties of dirsect products without detailad comment (see

[6.8]).
4.1 (2)-Serial CSP-1. The direct product of two matrices is given by

Definition 10, Let A and B be nxm and rxe matrices, respectively. Then
the direct product of A and B is the nrims matrix

anlB #12B ==~ aysB

A®B « |

amiB  amB - & B
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(with some abuse of notatilon in using B rather than its entries). A direct
product is sometimes referred to as a Kronecker product in the case of
matrices and an (algebraic) tensor product when the factors are explicitly

lirear operators,

Given the (2)=MC model in Figure 3; Chapter 2, Dafinition 10 can be
used to express ita transition matrix in a compact form which is given by
the third oquation below, By construction, the (2)=MC matrix can be written

P1Ig ‘hAz 0 === () i
P;Ig ] %Ag"’"“o

Aie -

PlIz 0 0 """QIAQ
41z 0 0 ~--8,A; o

]

Using some aimple propertiea of direct productn. we can tcwri:n tha above
matrix as

Tel, 007 [ wA, 050
b, 0eee0 ah, 0-=-0
pIIZ 0'_-0 ! plAa 0---0
bl 0w s, 0---0

EXTET Y 0---0 |
plAz 0 QIA{"' 0

& ava
PlAz 0 0“'Q1Az
h51A2 0 0---8A ; i

- GQ® (IZ'AZ)"'AJ. @ A,
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whare

10 w~==10 j
10 a0
CL= () -

10 wma 0
£1 0 === 0

(an i;x i; matrix)

Concerning A1z we have

Theoram 11. A,, is aperiodic, irreducible, and finite. Moragyer, if
es Is the long run firobability vector (pv) of Aj, 3= 1,2, then g,%g in
the long run probability vector (pv) of 190

Proof, 1) Refer'te Figure 3, Chapter 2, The state (0,0) is aperiodic,
It ia straightforward but tedious to verify that (0,0) ¢an be reached from
any atate and that from (0,0) any state can be reached. Thus tha matrix
is irreducible. Being irreducible and having one aperiodic statae (0,0)
imply aperiodicity for the matrix, Finally, it isg trivial that the matrix
is finite since ita dirsct product components are. 2) To prove the second
part of Theorem 11, we use the fact that a finite, aperiodic, and irreduci-
ble MC matrix has an unigue eigenvector with eilgenvalue 1, By assumption,

EdAj LN ||£jl|2" 1, and 24 is unique,

where ||y, = z vyl and § = 1,2, Thus e have,
(£@2) A ~(0® 2) & © (1- AD
* (2. @) ® A
- 00 Qe (l ) e A s, A
= (0 +,® e
- Q®e

Moreover the entries of o, @) e, are

Lo T
B o2 il i




oo

; Positive and add to one by the definition of the direct (or tensor) product
of two vectoras (of course "a, ®_e_2" requires, by Definition 10, that e, be

1,x 1 and @, be 1 x 1,). The uniqueness of a long run pv finishes the
proof,

TR TS

We now turn to thc~invaatigntion'of the marginal AFI(=) for the eécond

plan, , .
| Thedrem ;g.' For the second plan in (2)-serial CSP-1 the marginal
AFI(=) is given by .

APlg(w) = | = \’zﬁbl 24,
(ap, 1s used as shorthand since no EMC reduction is used in the proof.)

Proof. -
8 Qe - [<-:k> (2 >_]

by definitioen,

N4
J_-A_FIZ (o) = L;m -r%- Z z C(J.iz) (W;.Nzik)
’ kol f=]

[a.e.), by definition,
i)

cvr (3 mg) on, e
-
" vaap, @2,
Except for three comments, the theorem i finished,

If gampling bagins with state (0,0) with probability one or with
AL T €, , then operating on the characteristic funational,

C(3,4p) (Wr.wz23k), by E[+]5], whers

8 = "M12(0) = (0,0)" or "e QD e," allows the dropping of "[a.e.]! S8econdly,
Wk = Projp(uw), k = 1,2, Flnally. the definition of the functional implies
that we are considering tha identity matrix 84 a legitimate, but virtual,
transition matrixy this viewpoint has been mentionsd in Definition 5 and
after Definition 8, Chapter 3,

We see from Theorem 12 that the formula

1= vaap, ey, ' .

is the average number of units which are actuall inspected for the second




i.

' characteristic. Thus, for the-second plan in tandem, "not inspected" ia
not equivalent to "sampled' because of the control exerted by the first
plan on the second (recall the two interpratations of the identity matrix
4n Definition 5). In other words, 1-AFI, (=) is the avarage fraction not
inlpaugcd whereas 1=AFI(m, pﬁtiz.fa) is the average samplod (equal to
Vz‘aiz ’

Before leaving this section, an alternate "proof" of Theorem 11 will
be given which will, in addition, give some insight into the transient
behavior of the (2)-serial CSP-1 model, If a (2)-MC pv can. be expressed
a8 the direct product of two pv's (one for each plan), then such a pv will
be called separable. OGiven that the (2)~MC starting pv (initial pv) is
separable, define the pv's x% and y° s the initdal pv's for the first and
second plans, respectively, Dafining a vector ad & unity vactor iff each
of its entrias is unity, further define a(k) as the 1 x iy unity yector,

k= 1,2, and a(k)® as its trapspose iE % 1 unity veator). Let u?}. and
&) A
o

yT) ba the vecrors {x° and , respectivaly (if thd méaning is
clea?, we won't use the notatlon xF for a“vow (eolumn) vector corresponding

to the column (row) vector y). Than¥

(~’El @ 11)5131 - (3‘-0 Y Y°)E1® I + (Al" Cl) ® AJ a

80 u} - 80
0 ul
2
-'% +* E
1
}
( uil
.yl

whers gg = 1=v; xgl. and, in the same way,
AWt @ yb = sox® + (1-py!

%other ways of weiting x @ y arer x + yf, x and y column vectors, 1>l

and juat
fl , Xiyyo== *IY;Z
: (Y30 ===y yiz) - e
LI Ry Y1===%{, ¥,

In all four notations, the result is an puter product which is a matrix.
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- zo (Bo IZ + (1"‘80) Az)q

Hovever, (! @® y) a(2) = x' and aW &' ® ¥ = ¥
which, combined with the above, gives

xl e gl and yt e p0 (ag Io + s A2 )
Repeating with 5‘@ y2,

k2 = y? and y? eyl (81 Lo+ (2-ap) Aa)
where g, l-leil . In general, by induction, we have

xFHL w yThl apg yrtl o yr (Sr I, + (l=g,) Az)
where gy = l-lei . Thus, for a separable pv, the first plan's pv propagates
according to the plan's own individual structura, In contrast, the second
plan's pv propagates as a nonlinear function (because of "l=g,") of vectors
(pv's) arising from both plans and dependant on vy, The relevance to Theorem
11 arises from the observation that For all practical purposes, any pv for
the model can be conmidered separable even though theoretically, there are
nonseparable pv'es whose transfinite cardinal number is equal to that of the
set of all linear functions from the unit interval to itrelf (loosely speaking,

there are an infinite numbar of ways to factor a real number). In pa“ticular,
8, 8; 1s not only separable (by construction) hut self replicating.

The connectlon with Theorem 1l will be completed by silowing convergence of
x* and yT to g, and g,, respectively. In the process, we will see that the
model can be decomposed into a stationary ergodic and a noustationary strongly

ergodic' MC thereby providing a link to the results of Chapter 3. From Chapter 3
and [6,10], the matrix

j]"E','.\zcn - ]! (s, I2 + (1-gy) Az)

AZ (L)
atrongly couvorges to l,z since
Lim A2 () = (1-vyaz4,) I + (vieay)) A,
J

= (AFL(D], + (1-AFI(1)A )

= Ay, ATICL) = API(,pyidy,f)),

' N
nndowh) (strongly) converges to L2 by the usual summability arguments.
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Thus y¥ strongly converges to e, The decomposition of At into Ar and
A (1,r) 1s not surprising since the first plan doesan’t dégend on éh

e
1) second while the nonstationary MC appears because we are restricting _
attention to cha-segond plan which does depend on the first., ¢
I
i 4,2 (n)-Serial CSP-~1. These plane can also be easily handled by direct .
f producté, Before proving the next theorem, some new matrices must first %
§ ba provided. By extension ¢? direct products to three or more matrices, B
; we define the needed matrices in
2 g_e_ginition 11. Given (n)-serial CSP-1, the (n)-serial transition s :
: matrices are - ,
"N L.
Pllzn qlAgn 0---0 '
pllzn 0 qlA Zn--- 0
Ain = i
Pylon 0 - 0===q,A
8 [on 0" . 0-—-8Az
d .
where Pkl (k+1)n qkA(k+1)n 0---0 ]
Pl (kL yn 0 QA+ 0
Akn = -
Pl (k19n 0 0-== atAs1)n
L‘kl (k+1)n 0 0--- B Aceiyn

for 2 £ k £ n~-1 (and for k = 1). More explicitly,

Akn = the transition matrix of the (n-k+l)-serial CSP~1, consisting
of CSP-1's k through n from the original (n)-serial CS8P~1. §

For k = n, A, = A,. Moreover, .
b

I(k+1)n = the identity matrix of rank (g * ===+ i), for 1 € k ¢ n-2,
‘and of rank i, for k = n-1;

that is,

I(k+1)n .- tk+1®.”® In' l5$ksgn-2

v
&
h
&
¢

-In 'k.nnl.
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Some important relationships exist for these matrices in

Theorem 13. Given the matrices in Definition 1li, we have

Mo GO (Lo Ao )+ AD Ay

More' generally,

" A "ckw (I(HIYnA(k+1)n)+ A® Aisiyn ® 1sksnl

Proof. By definition,
Aw-iyn * Gt ®© (Ton = Aun) * Aact @ Aan
“Cos @ (I -A)+ AL @A,

since = A, and I Backward induction on k, the second equatioen

in the statement of tﬂis tgeorem. and the decomposition of the transition
matrices according to Definition 1l give the result for fixed n. Backward
induction can be converted into forward induction by relabelling. Double
induction can also be done by varying n, keeping k fixed, and then proceeding
by induction on k, keeping n fixed.

s B e A s

To determine tne long run pv of (n)=-serial CSP-1, Theorem 13 will be
used, in Theorem 14, along with

Proposition 3. 1f B, and B, are trapsition matrices for tws finite,
aperiodic, and irreducible MC's, then B3 Q) B, also has all three properties.
Moreover, if e, and e, are the long run pv's for Bl and By, respectively,
then o;db e, 18 the ong run pv for the matrix direct product.

Proof. It is trivial that the direct product is finite. The other
properties follow from the equation

- 1 2
Dlr(‘1.k)(r.n,) (P?t) (Pe)” -

vheorem 14. Oiven (n)~serial CSP-1 together with the long run pv's, 3
8k, for the constituent plans (1 £ k £ n), the long run pv for the perial
plun (model) is

0@ 20—® s )

Proof. Using backward induction on the index k, for fixed n (and more ]
genarally, double induction on k and n) as in Theorem 12, Theorem 12 shows E
that e, _ & e, 18 the long run pv for A(n-l)n' The first equation in
Theorem }3 the equation

‘e D e @@ en=(e) ® (2 @@ )",

Bl - aha s o0, il i debh A 2 3 et ) NS S SN R A Rl Dne B
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the fact that fi;, 18 a MC matrix, and Proposition 3 applied to Ay (@) Az,
suffice to finish the proof.

As an example of Theorem 14, conaider (3)-serial CSP-1, ‘The "Go"
probabilities for a tranaition in the third plan are;

q192, 9182y quZo 5“d_ 8182 o _
The "Stop" probabilitias for a (virtusl) traneition in the third plan are:
pl! qlpgb qlszv 61| 51P2| and 5162.

The matrices are:

Az = C ® (123 - Aga)* Al. ® A23 , (A4)
hs=C ® (I3-As) + A @ s (84)

Rearranging Eqe. (A4) and (B4), expanding the "23" identity matrix, and
substituting the rearvanged Eq. (B4) into the altered Eq. (A4) yield

A3 DL, DI, +(A1'C1)® O
""(Al‘cl)@(/\z' G) ® A

Looking at this last equation and the "Go" and "Stop" probabilities, the
first term of the aquation is the "Stop" matrix for transitions in the
sacond and third plans together while the second term is the "Stop" matrix

for transitions in the third plan alone., The third term ls, of course, the

"Go" matrix for all three plans together.

We investigate, at this point, an altarnate '"proof" for Theorom 14
analogous to the ona given for Theorem 1l. First of all, we derive the
recursions and the decomposition which resulc from the assumption of an
initial separable pv fqr (3)-serial CSP-l. The extention of the resulta
to (n)-serial C§P=1 is then easily obtained.

Let x° @ %"@ 2? ba an initial pv for the (3)-serial C8P-1 model.
Furthermore, define the following threa sequences of vectors:

o
uF = xOA[, ¥F = 3O A7, and w¥ = 20 A,

Also define a(2,3) to ba the unity 1 x (iz13) vector, and a(k) the unity
1 x 1g vector, for 1 s k & 3. Rewrite the equations for A5 and Ay; ae

A= € ®© 1y + (A -C) ® Ay (c4)

P 5 900 027 i At et il e B ii o ieic B Y et L ol R s B )




and

C,® I+ (Az" C2)® A3 (D4)

! - Fron Bq, (C4), we have o
; ‘ xl@ (llm l) - xO C1® (z0® !0)

* (! - ENCAR ® «® '° Aﬂ’ i
Bince the components of 21(8151 add to one, we have from the RHS of the

last equation
go(l) go(1)
W@ @® s [ 4yl - °1,
b

- }.-\_1' go(l) = 1‘\’1)‘21

Thus, as before we have x! = u!, Since the components of x! add to one, we
also have

AWt @@ @ ® 2 =g 0@ 2% + (1-go(1)) (x°® 20 Aza)
=y @z

‘Using Bq. (D4) to evaluate the sacond factor of the second term of the RHS
of the sacond to laat equation givn the following string of manipulations.

W' ® & = O £ A
' O EHHaR = @@ £% Ay e or

(zf’)1 = vl (as with the (2)-serial case)
AW IO = a@)t ((x°® 29) A23)
(;;°>l = go(2) 20 + (1-gy(2))u!
“ g0 (80(2) I3 + (1-go(2)) Ag)
[ where gg(2) -Ii-vgyg_a. Finally,
| @@ =) a@) =y (som I, + (1-30(1)) Az) y
- il

i
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where l-go(1,2) = (1-50(1))(1-80(2)). Proceading by induczian, . v i

+ g e gt e o s 4

SRS

and

_<_>'=<x ® =H -

.,;‘_r-i-l . yrtl xﬁl,' ¥t A"z (r), and g¥*Ll = gr A"S (xS

5 (1) Ip + (Lop () Az, 82(1) = Levix],

> >
W - »
e ”~~
s | r
A S
| ] ]

Be(1,2) I3 + (1-8p(1,2)) A3, 1=8p(1,2) = (1-gp(1))(1~gx(2))
and  g.(2) = 1-vgy{2. Furthermore,
yr =y j'l: A2 (1) and gF = 2° ﬁ Ay

Therefore once again y© (etrongly) converges to e,, 8r(l) converges to
1-v1a21 y and 8,(2) converges to 1-v2u21 It foilowe then that

l=gp(1,2) converges to (1'“1°21 )(1‘“2“21 )
and that y

A (r) (strongly) converges to (1-AFI(1):AF1(2))[s + AFI(1):AF1(2) Aj.

From the last statement, the recursive ralationships, summnbilicy theory,
and [6.10], gF converges to gj.

In summary, for an initial separable pv for (3)-n¢rinl C8P-1, all
three components individually convergu to their long run pv's which are
indepandant of one another., Moreover, analogous to Alz. R 3 decomposes
into one ergodic stationary MC and two strongly ergodic nonstationary MC's,
the third depending on the first two.

The vector approach can be genaralized to (n)-ssrial CSP~l as an alter-

nate "proof" for Theorem 14, However, the major reason for the vector g
approach is to obtsin recursions and the manner of convergence. By induction, ki
one can now easily show the follswing recurs%ons and decomposition for 4
with an initial separable pv = xl(XD---<Z) %5+ An outline of the results L
ie given halow, é
5;*1 - 5: A:(r), 1<8gn j

3

where 3
Ag(r) = gp(1,2,=~=,0=1)], + (1=gy(1,2,==-,81)) A, 2

4

3




and g=1
Lgr(1,2mmy0-1) = ][ Qovi(sh)gy)
k=1 A A
(and gy(0) » 1), Than taking limits, we have a "proof" for Theorem 14,
In general then, Aln decomposes inte an'ergodic stationary MC and (n=1)
strongly ergodic nonstationary MC's of increasing dependence on the sle- :
nents of all the preceding MC's. =~ = . 3
We now deal with AFI,(®) in :
Theoren 15, For (n)-sertal CP-l, i
 L1=AFIn(=) = vn(apyop, ===t Ob(y.1))eniy
(egain &by is shorthand, 1 £ § € n=l1),

Proof., From Thaorem 14,
L) ®"“"‘ &y " [(°Ij)(°2k)""""(°nu)]

The rest of the proof follows the logiec of Theorem 12, For example, the
functional is

N
%g Z G, 1p) @1 (n=1)» Unik)

whorae J'is the set of (n-l)-tuples of indices varying in a manner such that
the rth index varies batween L and i, 1 2 r £ n~l,
[ ]

The same comments made about AFIz(») and AFI(=,p,}i,,f,) also apply to
AFIn(.) and AFI(‘.Pn‘in,fn)-

4,3 (n)=-8erial CSP. An example of a CSP, different from CSP-1, is CSP-2
given in Figure 4; the limited sampling phase (abbr. ls) requires sampling
at -some frequency and, in addition, has a "clearance'" number (for successive, o
but not consecutive, k nondefective inaspected items). In a sense, the ls is 3
a combination of the sc and uls phases. .
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Figure 4
Block Diagram of CSP-2

(4)

sc and uls = ap in Figure 1
le = limiting sampling phase
Arrows (1) and (2)¢ As in Figure 1

Arrow (3): If k units are successively inspected
and found to be defact free

Arrow (4)1 1If the jth unit inspected is found to be
defactive, 1 £ J £ k

The ls phase can be looked upon as consisting of k MC states., Further,
each state, SLj, has transitions to HO and SL(J+l) (or to 8i for j = k),
given in ctha 2 transform mode, as followa (see [6.2] for furthar details)

8L] to BL(j+l) or 81 givan by "A/(z-v)} A = fq
8Lj to HO given by "8/(e=v)", & = £p
As an example, consider the (2)-serial CSP given by a CSP-2 folloyed by a

C8P~1 (the reverse order is aeasy since then the component matrix Az is
Just the transition matrix for C8P=2). The matrix for the total plan is

A1) = G ® (I ) +A@® A

Dropping indices on the individual probabilities, those matrices used on
the RHB above which come from usa of CBP=2 are

‘ Giy Gy
AL(2) =
i Owk

where
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"9 q 0 w==0" "V A Q== 0]
pO0Q === L 0 v A 0
Gy = i . v Ggk= L
POO==g ” D00 ~e= v
LOOO---B_ L

8§00 wam 0| B 7
§00==~0 0
Gay » B Y Y
§00 OJ bSOO---OJ
and (Jp4 18 an rxa matrix, Also
p- -
10 —— 0
0 - 0

10 === 0
0 mum £ wem 0
£0 === 0

ht 0 — 0_
where the "£" not in column 1 18 in (col, row) = (i+l,1), FPormally, the
analysis can procead in a manner entiraly analogous to that dona in S8acilon
4,2, For an initiul separable pv, the decomposition of this (2)-merial

C8P into a stationary MC and a nonstationary MC also holds, More generally,
such decompositions, analogous to the one which holds for (u)-serial CSP-l, .
hold for any (n)-serial CSP,

Ci2) = (»)

o

4.4 Variant Multicharacteristic Plans, The fivst plan that would scem a

netural variant ie one whose MC matrix is given by

xn - A]_@ Az

With this plan, the state daetaerminations for each component are indepandent
of one another., By Proposition 3, tha above matrix is irreducible, finite,
and aperiodic with long run pv _91@ e

Anothar posmible variant is given in Pigure 3.




LI R R TR R T

P AL P YR 2 By T P VO,

Figure 5
Variant Multlcharacteristic Plan

States! Same oe in Pigure 3
. Transitions ((ki)+l may ba 1) for = 1,2):

¥ State State Probabilit j

b (ki,k2) ((R1)+1, (k2)+1) 4,4, |

% (11,x2) M (41, (K2)+1) - £142 -

3 (kx1,12) ((k1)+1,12) q,R,
1 ¥ ) .

% (11,42) (11,12) 8,8, ; b
! 3 Any of above + (0,0) l-Prob(state)

i

¥ The transition rules in Figure 5 can bo rostated: transitions take place

: 1ff both characteristics are each either inspected and found nondefective or

sampled, If we let i) = ip = i, this plan has one ergodic class given by the
ks diagonal ordered pairs! (J,J)IO $3s i:% 3 all other states are transient.
- Moreover, if tha inspection starts ofl with the etate (0,0), wa then have a

plan equivalent to CSP 1 with § = 1-q,q. and B = 8,B,, However, with thia
plan, marginal AFI has no meaning because of the ambiguity expressad by P

~and 1-B. It 18 even doubtful whather the traditional AFI function would
be' a good measure of effactivencss for such a plan,

5.0 CONCLUSION. The motivation for thie paper is Chapter 3 even though the
main, workabl. results are contained in Chapter 4, ’

TR

3.1 Chaptar Threa. The two models considered in Chapter J amploy SMC raduc-
tion in an attempt to simplify the sccond order MC model at the end of
Chapter 2 and highlight the diffuronce between it and the (approximate)
model given by tha nonstationary MC. Any simplification of the (2)=MC

modal by using SMC raductione for both plans would probably not be worth

the effort since superimposing two independant SMC's ia quite a complex
process in itself} here, of course, the SNC's ave gependent!

1f# we are only intercated in the long run case (ignoring the transient
caee which is hard to analyze anyway), S8MC reduction of both plans can be
used to ylald a model consinting of che atatua ¢ (a,1), (a,2), (b,1), (b,2) B
where the letters and numerals refer to the secofd and firat BMC reduction, 3
raspectivaly, in Chapter 2, This model would replace the pdf's of wtates b
and 1 by geometric pdf's, The conditions to be satisfied for thias change ara
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The (q')'s are to be determined given the standard mean times up and Hia

More results on produgts of random matrices may be found in [6.4f
" whate variouu types of indapendenca aesumptions are invoked.

5,2 Chapter Four. One main result is Theorem 12 (and Theorem 14), As

a conluquancc of the theoram, the expreseion "vzeziz" has two interpreta«
tions! the average fraction mampled in the usual sense and the average
fraction not inspectad in the serial sense, The other main result, not
formally stated in any theorem, i the decomposition of any (n)~serial CSP
into a sequence of MC's, the first stationary, the remaining nonstationary,

The (2)=MC model assumes that the characteristice are indepéendent,
This condition can be relaxed if tha ordered pairs remain independent but !
~the two elements of any particular pair are allowed to be correlated. Let

® (X, Y4) be the description of the jth unit. Thac is, Xy(¥y) = Oor 1
1*! tha firlt (second) characteristic is nondefective or defettive, re~
apectively, The relaxation is equivalent to the assumption that the 2
form & Barnoulli process but that X4 and ¥4 are not independent. Then,
using the definitions of correlation coefficient and corditional probability
(aﬁ = Ppdys & ® 1,2) ve have

P+ (rojoz + P1Pp)
94

P[YJ - 1|x3 « (] = Pé -

and
P[¥y = 0|Xy » 0] = 93 = 1~P, .

Now Py < B, (or > P,) 1ff voyop > O (or < 0) and then 1ff the characteris-
tics are pouttively {or negatively) correlated, In particular, if ¢ » 0

(or < 0), than AFIz(w) will be shaller (or larger) than that obtainad in
Chapter 4, We finally note that for random variablaes xj and Yj. uncorrelated
is nquivnllnt to independenca.

ok e ol ole o

In the variant case, u (2)~characteristic plan is given wherae tha very
meaning of marginal AFI is nonuxistent. Buch a plan might be useful for
casms of large positive correlation.
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INTERVAL ESTIMATION FOR EMPIRICAL BAYES GENERALIZATIONS
OF STEIN'S ESTIMATOR

*
Carl Morris
Benior Statiscioian
The Rand Corporation
Sants Monica, Californla

CT. The Jumag~Stein estinator improves the expected mean
square arror of k > 3 independent sample means for all poasible com-
binations of true means. In spite of this, it is not widely used in
practical applications, partly because no confidence intervals accom=
pany it, We derive intarval estimates in this paper based on an un-
informative prior distribution and illustrate the use and success of
the mathod in an application. Not e¢nly is the estinator sbout three
timas as efficient as the sample maan vector in this example, but the
intervals provided are 37 percent shorter while containing the true
values with greuter fraquency than nominally claimed., The prior is
used in the final section to extend the Janmes-Stain estimator and to
provide interval estimates for the case whan the unknown parameters
are exchangeable but the sample means have unequal variances.

1. INTRODUCTION. The James-Stein estimator (1961) of the means
of k > 3 independent normal distributions is well-known for being uni-
formly and substantially better than the sample mean, on the basis of
ite expacted sum of squared arvors. The Jamas=Stein estimator and its
genaralizations apply to many situations invelving linear models, and
offar mean squared arror improvements over the classical estimatovs in
many of the applications of atatistics. Nevartheluss, an informal poll
of parhaps 150 statisticians at this conference reveuled that only ene
(I would be a second) had sver used a Stein-like estimator in a real
application.

e g aeE TR YRR e R

Why? Polls of othar groups of statisticians probably would yield
similar results, although subjective Bayasisns and ridge analysta may
use related mathods more frequently in actual data analysis. The rea-
sons cartainly include unfamiliaerity on the part of many statisticians
with the methods and the types of applications for which the Jamos=~
Stein estimator in particular, and multiparamecer estimation in genaral,

. is best suited. Long acceptance of the sample mesn snd its simplicity
‘ makes statisticians reluctant to reject it in faver of a wore compli-
cated and imparfectly understood method, Furtlermore, the usa of the
Jumes=B8tein estimator requiras making judgmenus sbout which problems
to combine, which not to, and the choice of origin to shrink toward,
1f thess judgmenta are not good, then the James=Stein astimator will
improve on the total mean squared error of the sample mean insignifi-
cantly, and can be much worse for some coordinates, These reusons for
the nonuse of the James=Stein eatimator in ugpliclcionu are discussad
more fully in Efron-Morris (1975, Secs. 1, §5).

ZAR 2o aia
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e
Thin work was partially aupporcad hy a vrant from the U.8, Dapnrt-
mont of Health, Nducation, and Velfare, “anhiniten, D.C.
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Even those familiar with the James-Stein eatimator often do not
use it in its simplest form because the assumptions made for its der~
ivation usually are not met. Instead, a goneralization usually must
be derived to estimate an appropriate origin, to account for nonnormal
distributions, for unsqual varisnces of the obmeervations, for unknown
variances of the cbmservations, for regression situations, for tulei-
variate data, or for another variation of the assumptions, Recent pro~
gZess in providing thase generaliszations has not yet had much impact.
Furthermore, the generalizations derived by different researchers are
not always in sgreement because they are not derived from any single
prineiple. It seems to ma, howaver, that data analysts probably will
find the empirical Bayes viewpoint moat useful both for identifying
appropriate situations for using the Jamem-Stein rule and its general~
isations, and for deriving appropriats generalimations. TFor that rea-
son the empirical Bayes viewpoint has bsen used in most of my papars
with Professor Efron (March 1972, August 1972, March 1973, November
1973, 1973, March 1977, May 1977) on this topic.

Anothey detervent to using the Jamas-Stein estimator is that
despilta fto abllity to reduce mean squared arror, no msthods have been
developed for estimating the precision of the estimates, or for deter-
mining confidence intervals. (Soms attempte have Leen made by Stein
(1962, 1973, 1974), dut the results thers are largely theorstical and
asyuptotic.)

The primary purpose of this papar is to provide a method for
deriving interval estimatus for the unknown parameters sstimated in a
mattey similar to that of Jamas-Stein and to illustrate the rssults on
data. This is done in Section 2, using formal Bayesian ideas. The
improper prior distribution used is not chosen subjectivaly, however,
but is chossn because it yields an estitator similar to the James-
Stein estimator, because tha resulting estimator is minimax (uniformly
dominating the vector of sample meana) and admiassibla, bacause it
should lead to conservative ilnterval estimates, and becauss it results
in aasily computable statistics., It has besen considered previously by
several authors Baranchik (1964), Stein (1962), Leonard (1974).

The discusaion in Section 2 is centered on ths problem of esti-
mating the true batting averages of eighteen bassball players. Thase
data, which ware used before in Efron-Morria (1975), area ideal for this
work bacauss the trus values are available. The "confidence intervals"
derived by the mathoda of Beation 2 are about 37 percent shorter in
this problam than those for the sample mean and they contain the :
trus values with the propsr probability. Since the true values vere :
not nhosen from the prior, the results encourage the Jdea that this {
wathod may be used generally. Buch a recommendation must await further i
rssearch, |

The prior distribution also is used in Seation & to derive a
multiparamater estimator for parameters which have an exchangeabls
distribution, but whose wample means have markedly unoqual variances.
While the reasulting estimates and imterval estimates in this




11lustration compare favorably to the sample mean, Section 4 is intended
only to illustrate the use of this method. The resulting rule is known
not to be minimax, however, and its properties await fuller investigation.
Still, the method appears to be as good as any suggested to date for
generalizing the James-Stein estimator to tha case of unaqual variances,
and it does permit construction of interval estimates,

2, A WORKED EXAMPLE) RMPIRI

BATTING gyzggg%s OF EIGHTEEN BASEBRALL PLAVERS. Let us consider the
problem of estimating the true means |91] of k normal distzibutions,

-l TGS I

g having observed the independent sauple means xl. xz. very xk. Each xi
; is assumed to have the sams variance V which is known. Thus, given ai.
x, B nte,, W 1w, 2 0k (2.1)

The simplest version of the James-Stein astimator (1961) applies
when k > 3 and requires making 2 priori guesses W,y kyy ooy fy &
01. By 1ens ek. Then ei is estinated by

T

_u.

B s hy * (= B X, =) (2.2)

with !
Big m (k=2)V/X(X, - w2 (2.3)

The value in (2,3) determines how much X, should be shrunk toward u,.
LQ‘\ ' Whenever st exceada unity, it should be replaced by 1 in (2.2)

The uaual astimator of 8y is xi. being the best unbiascd estimator,

the best fully invariant estimutor, the maximum likelihood, the least
squares and the Gauss=Markov estimator. It is minimax with tha ex-
pected oum of squared errors, the 'risk," being

<“_.;‘L~_~n<=e£ T R P

2,y .

EgZ(X; ~ &) NERR (2.4) ;

The subscript © on the expectation operator indica*es that el. vy B "?
are fixed and xl. cery xk vary sce ding to (2.1)., The Janss=-Stein

estimator le uniformly bettar by this critericn, having risk ]

* 2 - 3 C 2 .

vwhich 1s leas than k, since iJs > 0 always, If 01 .y for all 1, then
EgﬁJs » 1 rasulting in a cisk equal to 2,
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If the statistician prefers not to kuess at the {”11’ but believes

By ™y ™ eee M T ou (say), he may estimate by X = T Xilk and modify
(2.2) to

B g =X+ -8 -, (2.6)
defining
Bgm (k-3)/8, 8= x(x, - D, 2.7

This version of the James-Stein estimator applies only if k > 4 (one
degree of freedom is lost in estimating p by X), but it ordinarily would
be preferred to (2.2) in applications to data. Its risk is

BgE(Ry 5g = 0)°/V = k = (k=-3)E (2.8)

dominating the risk (2.4) of the sample means. If 61 -, = ak' it is

easily checked from the chi-square distribution that EEJS w ] and hence

that (2,8) is equal to 3. Otherwise (2.8) increases from 3 to k as
(e, - 6)2 increases. Once again, it is better to modify (2.6) mo that

every 6, is estimated by X in the event that EIS > 1.

The estimator (2.6) was applied in Efron-Morris (1975) to the base~
ball data of Table 1. The observations xi in the second colum are the

*
batting averages of 18 batters in 1970 after 45 attempts. The variance
of each X, 1s known to be V = (0.0659)2, The batting averages for these

players during the remainder of the season, conaidered to be the true
values' 91' will be presented later.

instead of the James-Stein estimator (2.6), the one recomuended in
this paper for k > 4 uses

8, = X+ (1- B)(xi - X, (2.9)
as in (2,6) but replaces (2.7) by the smaller value

*Actually the values X, in Table 1 are minor adjustaents to the
observed averages after 45 appearances given by X, = 0,4B841 + 0.0659453 *
arcein (2f4- 1), rounded to three significant figires., The observed
average actually is py; for example, §, = 18/45 = 0.400 for player 1
(Roberto Clemente). The arc:. - *'ensf&rmation atabilizes variances, as
required for assumption (2.1), and the constantes 0.484L and 0.0639 are
chosen so that the sxi} and the {p4} have the same mean (0.26567) and
standard deviation (070659). The same transformation €, = 0.4841 +
0.0659,/45 arcein (Zpi-l) was made to the true values p,, being the pro-
portior of successea during the remainder of the season for batter i,

The names of the players and other information about this problam are
contained in Efron-Morris (1975).
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Tatle i

THE MAXIMUM LIKELIHOOD EST(MATES (MLE), EMPLRICAL BAYES ESTIMATES (EBE),
AND TWO ESTIMATES OF THE EBE RISK FOR EACH OF ETIGHTREN BASEBALL PLAYERS

<

(8 )) (2) (3 (4) (5) (6) &)

MLE EBE \
"
1 Xy 8, o, (X) Py Ry ﬁi_
1 0.1395 0.308 0.046 0.203 0.491 1.738
2 0,375 0.301 0,044 0.145 0.454 1.163
3 0.355  0.295 0.043 0.097 0.424 0.685
4 0.334 0.288 0.042 0.057 0.398 0.287
N 6 0.313 0.281 0.041 0.027 0.379 -0.006
. 7 0,291 0.274 0.040 0.008 0.367 -0.198
3 8 0.269 0.267 0.040 0.000 0.362 =0.274
.-"_‘ 9 00247 0-260 0.0100 00004 00 365 -00234 t?.
- 10 0.247 0.260 0.040 0.004 0.36% -0.234 p
L 11 0.224 0.252 0.040 0.021 0.376 «0.067 ]
A 12 0.224 0,252 0.040 0.021 0.376 -0.067 i
; 13 0.224 0.252 0.040 0.021 0.376 -0.067 ;
o 14 0.224 0.252 0.040 0.021 0.376 =0.067
. 15 0.224 0.252 0.040 0.021 0.376 -0.067
L 17 0.175 0.236 0.043 0.100 0.425 0.714
' 18 0.148 0.227 0.045 0.168 0.469 1.391
MEAN | 0.266 0.266 0.042 0.056 0.397 0.274
STDEY ] 0.068 0.022 0.002 0.060 0.038 0.593

COMPUTATIONS: k = 18, m = 7.5, V = (0.0659)2,

% = 0.26567, 5 = (X, - /v = 18.93244,

1- 8(B) = 6.76 x 107°, e (5) = 3720.30214, e, (8) = 6.77428,
8« 3301 - 1/e, ,(8)) = 0.79229 x 0.85238 = 0.67534.

B, = Bx + (1-B)x, = 0.17941 + 0.32466 X,, P, = (X,-B)/5v « (x,-D%/0.08222,
v [28 - 15(1—3)/:7 5(8)1/8 = 0.63178/8 = 0.03337 = (0.18272,

*Lo1, 17 g8

o St e LTS o+ Sk b S i m’diﬂﬂmmmm e

c:(X) - (V% n:)i . 0.03966(1 + 1.7444 pi)*.

- 17 & a2
R, = 1-2358+p, s{2v+8%) = -0.27363 + 9.89823 P,,

» -
z Ri/k = (,39728, X Ri/k = 0,.27427.
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5-553(1-;-%5-.111-%3. (2.10)
m

vhere for § = I(X, - ibz/v we have defined

1 a1
cm(s) = m exp(S/2) IB B exp(-BS/2)dB. (2.11)

The theory behind this estimator wiil be presented in Besction 3.
Here it will be described and its application illustrated. The funetion
lm(S) increases with 8 from nm(O) w1 at 8 =0 to infinity ae § = =,

Thus lm(S) > 1 alwvays and therefore 8 in (2.10) shrinka X, toward X less
than the Jamas-Stein estimator doss. One can conpute cm(s) by dirsct

integration, or by using tables of the chi-square distribution, of the
incomplete gamma function, or of tha confluent hypergsometric function
M(a, b, 2), Abramowitz-Stegun (1965, Chapter 13), since

L

1
%»\;.
L

P O

]
-

.l

§/2 m-l :
=g 4% , (2.12) i

“ (8 = T Q" am(s/2) [ R |
! = M(1, w1, 8/2) = D(ml) & (3/2)3 /M (meiry), (2.13)
. f{

3=0 .
Howaver, it usually is simplest to compute it recursively from

0 ® =B _ (8 -1 (2.14) :

using the initial values
01(8) w (exp(8/2) ~ 1)(2/8),

R T B AR R P TR LR T AT a2 L
P

S T TR

(2.15)

=

0.5 = DT expis/2) (4B - .51,

Soc

&
i

g(x) being the cumulative distribution funecticn of & standard normal
distribution. For large valuas of 8, the approximation

1~ 0B & (2r8)"F exp(~8/2) (8+1) /(8+2) (2.16)

may be used in (2.15), Abramowitz-Stegun (1965, p. 932). For small values
of 8, 8 (5) & 1+ 8/2(mtl) + 82/4(wtl) (m+2), from (2.13), so

Ae-B_(1- 8/2

ignoring terma of order 82. Hence B decreases monotonically from

o/ (1) = (k=3)/(k=1) at S = 0 to 0 as 8 = w. Tha reader is cautioned
ghout the ume of (2.14) for small values of 5. It can be numerically
unstable in such cases, and then (2.13) should be used inastead.



Using the valuea of {xi} in Table 1, we calculate

X = 0.26567, § = L(X, - 07/(0.0659)7 = 18.93244, m = (k-3)/2 = 7.5,
1= 4B w 6.76 x 107 from (2.16), e 4(8) = 372030214 from (2.15),
cm(s) " e7.5(8) w §,77428 by itaration of (2.14) seven times,
Byg = 15/8 = 0.79229, 8 = 0,79229 * 0,85238 = 0.67534,
31 = 0,26567 + (1 = 0.67534)(xi ~ U.26567) = 0,17941 + 0.32466.*1.
In this case, (2.9) shrinks tha MLE toward the grand mean only 85.238

sarccnt as much ae ths James=Stein astimutor (2.6) does. The valuas
| are recorded as the empirical Bayeas estimates in the third column

of Table 1.
What precision should be attached to the astimates just derived?

e error of estimate we will use is given in column 4 of Table 1 as
9,(2), computed as follows. Define

v e [28 « (1-B)(k-3)/6,(8)]/8 (2.18)
and
Ry =&+ EL 1By 4 p,vs (2.19)
vhare
P, m (X, - i)z/mxj -0 - x, - s, (2.20)

Then o:(x) is defined to be
oy (x) = R, (2.2)

From the values already obtained, we compute

v = 0.63178/8 = 0.03337, R, = 0.36218 + 0.63178 P,
oy (X) = 0.0659 (0.36218 + 0.63178 B,)¥ w 0,02966(1 + 1.7444 ppt,

The values {Pi}' which are recorded in column 5 of Table 1, measure in

relacive terms the squared distances from the individual means to the
grand mean. The precision (2.21) is better for thoss components i having
xi near the center X of the data. This fact is completely analogous to
a"similar result in linear regression, that prediction errors are smaller
near the mesn of the explanatory variables. Values of o:(X) appear in
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column &4 of Table 1. A player at the mean would have c:(x) = 0,03966,
but player number 1 is farthest from the center with Pl = (0,203, and
. thcroforn has ui(x) = 0,046, 16 percent larger. The typical value of
oy (X) is about 0.0415, or 37 percent less than the standard deviation
0. 0659 of x Thus, a conaiderable improvement in preciasion is claimed,
equivalent co using th. .ample means of a sample 2,52 times as large.

Formula (2.19) is one of two estimates of the risk (% - 6,) /v
of the empirical Bayes estimator (2.9). These valuas are sivnn as Ri

in column 6 of Table 1, and are less than the risk of the sample avarage
E (x - 61)2/V = 1 for every player.

x

R ooy

In colum 7, the unbiased estimates ﬁi of the risks of 61 ars given,
computed from the formula

kel 2 a2
ﬁ: ml-2E284p [2v+ 808, (2.22)

P

- &
N . e .

The estimator in (2.22) is the unique unbiased estimator of the squared
error risk of the estimator (2.9). That is

2
Eeﬁi - ne(ai - 8%V, (2.23)

N TR )

for all fixed (91. ey ek)‘ Summing the values of (2.23) over all k
players, with (2.18) substituted in (2,22), we obtain

R, = IR, =k - (ke3)[8 + (2-B)/0 (9)], (2.24)

Since i+ <k for all (xl. teey xk). and ﬁ+ 1¢ unbiased for tha risk of
(2.9), 1t follows that (2.9) is a minimax estimator of (61. ooy ek)
for k > 4. That is

B T(8, - 8)2/V = k = (-DEIE + (2-B)/a ()] <k (2.2%)

{ for every sst of values (G s veey ak). The minimax character of (2.9)
\ was provad by baranchik (1964).
|

Clearly the vnluul Ri in Table 1 are unreasonable, being negative

ustimates of a positive quantity in the central 11 of the 18 cases., With
other data these astimates might look bntanr. but they generally tend to
be quite variable. The smoother values R, provide more reasonable asti-

|

]

e mates of component risk, although as a group they s.nd to be conservative,
' for the following reasons. The sum of the valuas can be written

i
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n:‘_ .z n: =k - (k=3 [B + (1-B)/e_(9)], (2.26)

or using (2.24),
By = R, + 2u/e_(5). (2.27)

It follows from (2.27) that Rr overestimates the total risk of
(el. vory ﬁk), since ﬁ is unbianod for thise rilk. For the data of
Table 1, we calculate ﬂ = 4,937 from (2.24), n “ 7 151 from (2.26),
and Zm/em(s) = 2,214, Thc amount Zm/e (8) thnt R overestimates the
total risk decreaues as § increasss, nnd would tlnd to ba smaller for
most axamples, where the true values are likely to ba mora dispersed.
How wall does this analysis do? The true vnlucn are 3ivcn in
Table 2, colum 2. Column 3 presents the valuss (31 - 91)/ci(X). a

distribution which ideally has zero msan and unit standard deviation.

The mean of thess values is -0,027, only about one-tenth of a standard
deviation from that expectead, tha standard deviation ias 0,862, meaning
that the intervals are conservative. This is expected, since from (2.27),

L] " 2
E R, >E,Z (6 = 8) (2.28)

“2
by gy (X) = VEB

and so the o:(x) tend to be too large (by about 15 percent in tnis case).
For comparison, tha distribution of errors of xi. relative to the stan-
dard deviation of xi, is given in column 4 of Table 2. The msan and

standard deviation of these numbars are almost exactly what is expected
from a sample of 18 numbers from & N(0,1) distribution., Hence, the in=-
tervals for y in this axample are both shorter and more conservative

than those for xi.

The signs of the MLE errors in column 4 are strongly correlatsd
with the xi values, because the true means ei have regressed markedly

toward the muan, relative to the observed means xi. Figure 1 shows
this regression effect vividly, and how the {9 ] shrink the {xi] to
produce better estimates. The dispersion of thu [ei] is even smaller
than that of the true values {6,] since the ordering of the {6,} 1s not
highly correlatsd with that of the [xi] {Spearman's rank correlation

*Theno really are only the batting averages for the remainder of
the 1970 meason, being independent estimates of the true values with
standard deviation 0.0659 (43/N,) , N, given in colunn 7 of Table 2.
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coefficient 13 only p(e, X) = 0.218 for these data). The regression
to the mean effect also occurs for the EB estimates Bi in column 3,

although it is much less pronounced. Az even lews conservative shrinking
constant than B would be needed to aliminate the ragression to the mean
for these estimates and trus values.

Table 2

TRUE VALUES, RELATIVE ERRORS, AND LOSSES POR
EMPTRICAL BAYES ESTIMATES (EBE) AND
MAXIMUM LIRELIHOOD ESTIMATES (MLE)

(1) (2) (3) (4) ¢)) (6) (n
TRUE EBE MLE EBE MLE
VALUE RELATIVE RELATIVE  LOSS LOSS :
ERROR ERROR :
- 2 2 .
. 6 8,-6, X,-8,  (9-¢) (X,-8,) . %
qgixs J v v 3
1 0, 346 =0.831 0. 744 0.339 0.553 367 '
2 0.300 0.026 1.138 0,000 1.298 426 *
3 0.279 0,36% 1,153 0.057 1.330 521
4 0.223 1.560 1.684 0.968 2.837 278
5 0.276 0.124 0.561 0,006 0,318 418
6 0.273 0.198 0.607 0.015 0.368 466
7 0.266 0.198 0.379 0.014 0.144 586
8 0,211 1,406 0.880 0.716 0.778 138
9 0.271 0,286 -0, 364 0,030 0.133 510
10 0.232 0.694 0.228 0.17% 0.052 200
11 0.266 ~0.343 -0.637 0.044 0.406 277 ~
12 0.258 -0,14% -0.516 0.008 0.266 270 i
13 0.306 -1,334 =1.244 0.668 1.548 435 ]
14 0.267 0,368 ~0.683 0.051 0.426 538 ;
15 0.228 0.598 . =0.061 0.134 0.004 186 ;
16 0.288 -1,084 -1,338 0.439 1.783 538 i
17 0,318 -1.903 -2,170 1,540 4,709 408 £
18 0.200 0.609 -0.789 0.174 0.623 70 oA
MEAN  0.267 -0,027 -0,022 0.299 0.976 369 i
SIDEV 0.037 0.862 0.988 0.412 1.157 130 t

The obsarvations of the preceding paragraph are exprossed differently
in Figure 2. The central dashed line is the maximum likelihood estimator
(the 45 degree line): the other four dashed lines are the MLE plum or
minua 1.00 and 1.96 standard deviuations of X,. These determine the classi-
cal 68 percent and 55 percent confidence intirvulu. Each player is plotted
at his point (X, 6,). 'The dashed confidence bands do very well: 12/18 of
of the true vnlﬁoa 3re located betwaen tha 16th and 84th percentiles; and
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Eighteen players plotted at (X, 81 ) using data of Tables 1, 2
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17/18 are within the 95th confidence band. The middle solid line is
the empirical Bayes estimator 01 = 0.17941 + 0.32466 Xy. This value
+ ci(x) is intended to correspond approximately to 68 parcant con-

fidance, and + 1,96 ¢ <x) to 95 percent confidence., Notica that thess
s0lid line confidence bands curve to allow for graatar arrors &t axtiema
valuas of xi. The confidence banda are conservative in this application,

in congrusnce with the theoretical statements made aftar (2.27); 13/18 »
0.722 of the trus valuas ars In the central &8 percent confidence regiomn,
and all 18 are in the 93 percent region. .

An extremaly intaresting point raised by Figure 2 is that whan the
93 percent confidence region is used to make a statistical test that the
trus valus of & player is a specified value, then conflicting results can
be obtained from the classical and empirical Bayes methods. Becauss it
has shorter intervals, we sxpect the ampirical Bayes mathodology to reject
certain true values when tha MLE doss not. For example, from Figurs 2, Py
a 0.500 season avsrags cannot ba rejected for player number 1 according j
to classical theory, but is out of the question from the empirical Bayes !
standpoint. (No ons has sver approached such a valus for a full season.) h
The astonishing fact is that the empirical Baves mathod includes two small .
regions that are excluded by the classical methodology. To iliustrate &
this, a true valus of 0.318 is rejected at the 95 percent lavel for player ;
number 17 (Thurmond Munson) by the classical test, but is not rejected at '
the same lavel using empirical Bayes intarvals in Table 2. It tuzns out
that 0,318 wae Munson's true value., (And in 1976 he was voted the most
valuable player in the American Lesague!) We will not discuss this hy-
pothesis testing problem further here, but obviously it is a worthy topilc !

for further research, ]
- Oolumns (5) and (6) show the losses incurred by the two sstimators
6 and X,. Only for the 10th and 15th players doas 9, fail to improve

on xi. lnd in those cases the Gi loss is small., The empirical Bayes loas
:xi - 8) /V for thea 18 players is 5.38. The sample weans give 17,57,

cloan to what is expected for 18 components, but worse by a multipla of
3,27 than 5,38, The values Ri and RT from Table 1 estimata the cxplcttd

valus of entries in colum (3) of Tuble 2. 81na. R, = 4,94 and R L] 7 18,
ﬁ is ocloser to the combined loss I.‘.(Gi - ei> /V =5, 35. Howevat tha R
vnluun. being smoothar uotimnteu of E(ei- ] ) /V. are mnuch closer to th.
individual losses (ﬁ - 01) /V of the pluynru than are the ﬁ

—ORICSHS ST NS L FF=EPNTE

Do thers results hold up for other samplse {xi] from theme true
values [ei1? A simulation was conduct-d to cheack chis and to deternine
whether the intervals computed hy 91 + ci(X) and 91__ 1.96 ci(x) contain

the trun valuss at least 68 parcent and 95 parcent of the time. Using
the same true values {91] of Table 2 eich time, new values of (xl. iy xls)

wara randonly drawn from the normal distribution (2.1) one hundred times, 3
with Vlr(x ) = (0.0659)2 in all cames,
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In the 1800 experiences, the Jfrue values were contained in their
nominal 68 percent intervals (in ei + a;(x)) 74 percent of the tims, and

in the nominal 95 per